公开课 | 看了10集《老友记》就被系统推荐了10季,Hulu如何用深度学习避免视频推荐的过拟合

原创 2018年01月08日 00:00:00

640?wx_fmt=jpeg&wxfrom=5&wx_lazy=1


昨天,我们推送了一篇《用Word2Vec实现让你上瘾的网易云音乐推荐算法》,然而有机智的小伙伴指出:感觉推荐过拟合!?


640?wx_fmt=png&wxfrom=5&wx_lazy=1


也就是说,如果你多听了几首刘德华的歌,就会一直给你推荐刘德华,但是你的内心其实四大天王都想尝试听听呀~


0?wx_fmt=jpeg


还有一个领域也会遇到类似的问题,那就是视频推荐


也是哦,如果你看过老友记,那么反复给你推荐老友记1-10季肯定没毛病~但这样有点背离推荐算法的初衷是不是?


0?wx_fmt=gif


精准的推荐算法能够推送更匹配的信息,带来惊喜和良好的用户体验。


这次公开课,我们请到了Hulu北京研发中心的推荐算法研发负责人周涵宁老师,来为我们分享基于深度学习的视频推荐系统。


0?wx_fmt=jpeg


知道Hulu的人远不如知道YouTube和优酷、土豆的人多。


Hulu是2006年由美国福克斯广播公司、迪士尼ABC电视集团以及NBC环球电视集团三方共同合资建立的一个互联网专业视频服务平台,目前在美国拥有1400万注册用户。Hulu的目标是帮助用户在任意时刻、任何地点、以任何方式查找并欣赏到高质量的电视剧、电影和电视直播。


0?wx_fmt=gif


有了Hulu账户,可以第一时间看各种美剧和电影!在Hulu的众多电视剧资源中,2017年最受欢迎的剧集是South Park(南方公园),美国用户观看南方公园的时间超过了10,700万小时,单位换算为年的话,超过了1.2万年!

0?wx_fmt=jpeg

内容简介

推荐系统是人工智能在商业化中比较成熟的应用之一。随着视频分发平台的崛起,视频推荐获得了广泛的应用。


本次公开课会基于Hulu的实践,介绍深度学习如何应用在视频推荐中。以特征选择为例,深度学习可以利用非线性映射(利用激活函数的非线性),自动化特征选择的步骤,使得我们可以更容易地整合多种信息源。

0?wx_fmt=png

公开课将涉及到推荐系统的目标和框架以及一些具体的模型,例如下图中的深度神经网络 ▼

0?wx_fmt=png

最后介绍如何将算法与用户体验相结合,包括基于知识图谱,用推理树产生合理的推荐理由。

0?wx_fmt=png

我们也摘录了周涵宁老师此前接受采访的片段,供大家了解与思考:


基于深度学习的视频推荐系统,下一步的发展是怎样的?


  • 中短期的规划主要是基于内容的推荐,解决冷启动问题。


视频网站的核心价值是对内容的理解。基于用户行为的相关内容分析,已经到了比较成熟的阶段,接下来的主要挑战是对新内容和中长尾内容的冷启动。目前,现有的方法依赖于人工标签,存在一定的局限性,随着计算机视觉技术的发展,未来将会有越来越多的系统是基于内容理解来自动打标签。


0?wx_fmt=jpeg


  • 长期的规划是,基于自然语言对话进行内容的推荐。


智能助手的应用是一个很有潜力的发展方向。例如,我晚上回到家,对电视说“我今天心情低落”,电视就会推荐一些治愈系的影视作品。如果我接着说“我想看点搞笑的”,它就会在之前推荐的基础上,筛选出喜剧。这个场景虽然看似简单,却涉及复杂的情感类语义标签和多轮对话之间的上下文关联。

0?wx_fmt=gif


嘉宾简介

周涵宁,现任Hulu北京研发中心推荐算法研发负责人,具有15年的研发创新和管理经验,专注于应用数据和算法实现产品落地,有丰富的数据分析和机器学习实践经验。


他本科毕业于清华大学自动化系,于伊利诺伊大学香槟分校获得计算机视觉领域博士学位。历任施乐硅谷研究中心研究员,亚马逊美国总部高级技术经理,盛大创新院资深研究员兼产品总监,智谷公司技术副总裁和宝宝树CTO。他拥有十多项美国专利授权,发表学术论文二十余篇。


还有2天开讲,抓紧时间扫码

进直播间嗨起来吧!

0?wx_fmt=jpeg


请注意:

本次公开课形式为PPT+语音直播,无需下载APP,长按识别上方海报中的二维码即可通过微信进入直播间收听。


赠书福利:

欢迎大家在直播间中生成专属邀请函并分享~开课前邀请人数排名前12的小伙伴,每人将获赠O'Reilly出版社赞助本次活动的图书一本~


书名:

Python数据分析基础

Python数据处理

Python网络数据采集

Spark快速大数据分析

R图形化数据分析


0?wx_fmt=jpeg

进入直播间后,点击“邀请朋友一起听课,强势上榜”即可选择自己的专属邀请函并发送给朋友~


点击下面的文字收听往期公开课

公开课 | 用CNN识别CT影像诊断肺癌结节+从GitHub社交数据中挖掘人才+量化投资中的数据处理,3场直播连击


公开课 | 我们请来了2017 NIPS大会发文数全球前3的华人教授,讲解网络数据的表征学习


点击下方阅读原文加入本期公开课

?

0?wx_fmt=jpeg

0?wx_fmt=jpeg

版权声明:本文为博主原创文章,未经博主允许不得转载。

强烈推荐的机器学习,深度学习课程以及python库

本文知乎链接: https://zhuanlan.zhihu.com/p/24768878 本着两条原则发一波车: 1.不建议报辅导班。不是因为我们不应该为学习知识付费, 而是因为有更好的资源,...
  • zby1001
  • zby1001
  • 2017年01月08日 15:03
  • 8174

斯坦福公开课深度学习Deep Learning

Deep Learning Samy Bengio, Tom Dean and Andrew Ng COURSE DESCRIPTION In this course, you'll ...
  • GarfieldEr007
  • GarfieldEr007
  • 2016年03月30日 12:36
  • 6130

深度学习视频教程推荐

由复旦大学 吴立德老师教授的课程.
  • yunTrans
  • yunTrans
  • 2015年01月20日 20:30
  • 2348

推荐系统架构

推荐系统(RecSys)作为电子商务中一个很火的应用,主要是为了帮助用户发现可能感兴趣的东西,这种就叫做个性化推荐系统;而广告商还可以利用结果将内容投放给可能会对它们感兴趣的用户,这就成了个性化广告。...
  • abv123456789
  • abv123456789
  • 2015年08月19日 20:48
  • 3088

深度学习--防止过拟合的几种方法

本博客仅为作者记录笔记之用,不免有很多细节不对之处。还望各位看官能够见谅,欢迎批评指正。  在机器学习和深度学习中,过拟合是一个十分常见的问题,一旦模型过拟合了,可能这个模型就无法适用于业务场景中了。...
  • Left_Think
  • Left_Think
  • 2017年08月29日 18:05
  • 1458

深度学习防止过拟合的方法

\quad过拟合即在训练误差很小,而泛化误差很大,因为模型可能过于的复杂,使其”记住”了训练样本,然而其泛化误差却很高,在传统的机器学习方法中有很大防止过拟合的方法,同样这些方法很多也适合用于深度学习...
  • taoyanqi8932
  • taoyanqi8932
  • 2017年05月02日 20:52
  • 6306

“购买过该商品的用户还浏览了”的商品推荐功能实现

该功能是基于数据库中persona_product,和persona_order表实现的,这两个表分别记录了用户的id以及该用户浏览过的商品,用户的id以及该用户购买过的商品,主要思路如下: ...
  • shiwei1003462571
  • shiwei1003462571
  • 2015年07月31日 15:58
  • 532

大牛推荐:AI、机器学习、深度学习必看7大入门视频

作者:AI100来源:AI科技大本营这年头,谈话间,不夹杂点“人工智能”,“机器学习”,“深度学习”这样的字眼,就跟九十年代追不上互联网的时髦一样——丢份!可是呢,说白了,真正懂行的没几个,真的没几个...
  • tkkzc3E6s4Ou4
  • tkkzc3E6s4Ou4
  • 2017年12月20日 00:00
  • 263

当推荐系统遇上深度学习

Deep Learning Meets Recommendation Systems 深度学习 推荐系统 电影海报
  • somTian
  • somTian
  • 2017年05月10日 11:57
  • 7532

深度学习中防止过拟合的方法

在深度学习中,当数据量不够大时候,常常采用下面4中方法: 1. 人工增加训练集的大小. 通过平移, 翻转, 加噪声等方法从已有数据中创造出一批"新"的数据.也就是Data Augmentat...
  • Ddreaming
  • Ddreaming
  • 2016年11月18日 09:04
  • 4440
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:公开课 | 看了10集《老友记》就被系统推荐了10季,Hulu如何用深度学习避免视频推荐的过拟合
举报原因:
原因补充:

(最多只允许输入30个字)