【第22期】观点:IT 行业加班,到底有没有价值?

图的基本操作

原创 2007年09月29日 12:58:00
#define M 20
#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>
/*定义图*/
typedef struct{
 int V
;
 int R
;
 int vexnum;
}Graph;
/*定义队列*/
typedef struct{
 int V
;
 int front;
 int rear;
}Queue;
/*全局变量:访问标志数组*/
int visited
;
/*创建图*/
void creatgraph(Graph *g,int n);
/* 打印图的邻接矩阵 */
void printgraph(Graph *g);
/* 访问顶点 */
void visitvex(Graph *g,int vex);
/* 获取第一个未被访问的邻接节点 */
int firstadjvex(Graph *g,int vex);
/* 获取下一个未被访问的邻接节点(深度遍历) */
int nextadjvex(Graph *g,int vex,int w);
/* 深度递归遍历 */
void dfs(Graph *g,int vex);
void dfstraverse(Graph *g);
/* 初始化队列 */
initqueue(Queue *q);
/* 判断队列是否为空 */
int quempty(Queue *q);
/* 入队操作 */
enqueue(Queue *q,int e);
/* 出队操作 */
dequeue(Queue *q);
/* 广度遍历 */
void BESTraverse(Graph *g);
/* 主程序 */
main()
{
 int n;
 Graph *g=(Graph *)malloc(sizeof(Graph));
 char menu;
 printf("请输入图的顶点个数:/n");
 scanf("%d",&n);
 creatgraph(g,n);
 printf("图的邻接矩阵如下:/n");
 printgraph(g);
input:
 printf("请输入您的选择(b-广度优先遍历,d-深度优先遍历,q-退出): /n");
 while((menu=getchar())=='/n');
 if(menu=='b')
 {
  printf("广度优先遍历结果如下:/n");
  BESTraverse(g);
  printf("/n");
  goto input;
 }
 else if(menu=='d')
 {
  printf("深度优先遍历结果如下:/n");
  dfstraverse(g);
  printf("/n");
  goto input;
 }
 else if(menu=='q')
 {
  exit(0);
 }
 else
 {
  printf("您的输入有误!/n");
 }
}

/*创建图*/
void creatgraph(Graph *g,int n)
{
 int i,j,r1,r2,weight;
 g->vexnum=n;
 /*顶点用i表示*/
 for(i=1;i<=n;i++)
 {
  g->V[i]=i;
 }
 /*初始化R*/
 for(i=1;i<=n;i++)
  for(j=1;j<=n;j++)
  {
   g->R[i][j]=0;
  }
  /*输入R*/
  printf("请输入有关系的两个边及其权重,格式如(0,0,0 代表结束):/n");
  scanf("%d,%d,%d",&r1,&r2,&weight);
  while(r1!=0&&r2!=0&&weight!=0)
  {
   g->R[r1][r2]=weight;
   g->R[r2][r1]=weight;
   scanf("%d,%d,%d",&r1,&r2,&weight);
  }
}
/*打印图的邻接矩阵*/
void printgraph(Graph *g)
{
 int i,j;
 for(i=1;i<=g->vexnum;i++)
 {
  for(j=1;j<=g->vexnum;j++)
  {
   printf("%2d ",g->R[i][j]);
  }
  printf("/n");
 }
}
/*访问顶点*/
void visitvex(Graph *g,int vex)
{
 printf("%d ",g->V[vex]);
}
/*获取第一个未被访问的邻接节点*/
int firstadjvex(Graph *g,int vex)
{
 int w,i;
 for(i=1;i<=g->vexnum;i++)
 {
  if(g->R[vex][i]==1&&visited[i]==0)
  {
   w=i;
   break;
  }
  else
  {
   w=0;
  }
 }
 return w;
}
/*获取下一个未被访问的邻接节点(深度遍历)*/
int nextadjvex(Graph *g,int vex,int w)
{
 int t;
 t=firstadjvex(g,w);
 return t;
}
/*深度递归遍历*/
void dfs(Graph *g,int vex)
{
 int w;
 visited[vex]=1;
 visitvex(g,vex);
 for(w=firstadjvex(g,vex);w>0;w=nextadjvex(g,vex,w))
  if(!visited[w])
  {
   dfs(g,w);
  }
}
void dfstraverse(Graph *g)
{
 int i;
 for(i=1;i<=g->vexnum;i++)
  visited[i]=0;
 for(i=1;i<=g->vexnum;i++)
  if(!visited[i])
  {dfs(g,i);}
}
/*初始化队列*/
initqueue(Queue *q)
{
 q->fr;
 q->rear=0;
}
/*判断队列是否为空*/
int quempty(Queue *q)
{
 if(q->front==q->rear)
 {
  return 0;
 }
 else
 {
  return 1;
 }
}
/*入队操作*/
enqueue(Queue *q,int e)
{
 if((q->rear+1)%M==q->front)
 {
  printf("The queue is overflow!/n");
  return 0;
 }
 else
 {
  q->V[q->rear]=e;
  q->rear=(q->rear+1)%M;
  return 1;
 }
}
/*出队操作*/
dequeue(Queue *q)
{
 int t;
 if(q->front==q->rear)
 {
  printf("The queue is empty!/n");
  return 0;
 }
 else
 {
  t=q->V[q->front];
  q->front=(q->front+1)%M;
  return t;
 }
}
/*广度遍历*/
void BESTraverse(Graph *g)
{
 int i;
 Queue *q=(Queue *)malloc(sizeof(Queue));
 for(i=1;i<=g->vexnum;i++)
 {
  visited[i]=0;
 }
 initqueue(q);
 for(i=1;i<=g->vexnum;i++)
 {
  if(!visited[i])
  {
   visited[i]=1;
   visitvex(g,g->V[i]);
   enqueue(q,g->V[i]);
   while(!quempty(q))
   {
    int u,w;
    u=dequeue(q);
    for(w=firstadjvex(g,u);w>0;w=nextadjvex(g,u,w))
    {
     if(!visited[w])
     {
      visited[w]=1;
      visitvex(g,w);
      enqueue(q,w);
     }
    }
   }
  }
 }
}  
 
版权声明:本文为博主原创文章,未经博主允许不得转载。 举报

相关文章推荐

算法与数据结构--图的实现、基本操作及应用

#include #include #include using namespace std; #define INFINITY DBL_MAX //无穷大 #define MAX_VERT...

FreeRunner手机的基本操作

FreeRunner手机的基本操作 本文记录一些FreeRunner手机的基本操作。本文把FreeRunner手机简称为fr。 1、ssh登录 1.1、主机用VMWare+Ubuntu 将VMWare窗口选为当前窗口,然后用USB线连接PC和FreeRunner手机。这时如果在VMWare窗...

Android Notification 详解(各版本对比)——基本操作

本篇转载出处:http://www.cnblogs.com/travellife/ 温故而知新,可以为师矣~ 下图是我对 Notification 做的思维导图,也是本文的主要逻辑。 ...

二叉树基本操作大全

1.二叉树的基本操作 这里我有一个疑问:   在使用构造函数的时候,传参数的问题? 开始我是这么理解的------只使用指针(其实指针本身就是一个地址,相当于引用,也会改变root建立起二叉树),而2指针的引用,相当于就是对记录了指针的地址,采用了二次引用,其实是没有必要的,一次就...

图基本操作的实现

图基本操作的实现一、【实验内容】【问题描述】(1)、选择邻接表作为无向图的存储结构,设计一个程序实现图的基本操作(包括输出、广度遍历、深度遍历)(2)、选择邻接矩阵作为无向图的存储结构,分别设计用pr...
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)