查找存在重复元素中排列的序号
这道题基于查找不存在重复元素中排列序号的基础之上,
即P(n) = P(n-1)+C(n-1)
C(n-1) = (首元素为小于当前元素,之后的全排列值)
P(1) = 1;
而不存在重复元素的全排列值C(n-1) = (n-1)!*k(k为首元素之后小于当前元素的个数)
在存在重复元素的排列中首先全排列的值的求法变为:
C(n-1) = (n-1)!/(A1!*A2!*···*Aj!)*k(其中Ai 为重复元素的个数,k为小于首元素前不重复的个数)
宠儿得到如下代码:
class Solution {
public:
/**
* @param A an integer array
* @return a long integer
* The index of vector A is the Full Permutation when the first number
* replace to number which behind it and smaller than it
* and then iterator to next elements until to the end.
* and repeat numbers Full Permutation = n!/(repeat numbers!)
* just map to ps[n]/tmp in the code
*/
long long permutationIndexII(vector<int>& A) {
// Write your code here
int n = A.size();
if(!n) return 0;
long long *ps = new long long [n];// records Factorial of n
ps[0] = 1;
for(int i=1;i<n;i++){
ps[i] = ps[i-1]*(i+1);
}
long long res = 1;
int j,start,k;
unordered_map<int,int> cnts;//records counts of each number behind i
cnts[A[n-1]] = 1;// from n-1 point
long long tmp = 1;//current value results to ps[n-2-i]/tmp (tmp means the repeat numbers' Factorial which behind i like Permutation(1122) = 4!/(2!*2!) or Permutation(111122)= 6!/(4!*2!) just map to ps[n]/tmp)
for(int i=n-2;i>=0;i--){
start = A[i];
cnts[A[i]]++;
for(j = i + 1 ; j < n ; j++){
if(A[i] <= A[j]) break;//no more elements smaller than A[i]
if(start == A[j]) continue;//element has been visited
else {//new element which smaller than A[i] and haven't been visited
start = A[j];
res += ps[n-i-2]/(tmp * cnts[A[i]] / cnts[A[j]]);
}
}
tmp *= cnts[A[i]];
j--;
//sort elements behind i
if(i != j){
start = A[i];
for(k=i;k<j;k++){
A[k] = A[k+1];
}
A[j] = start;
}
}
return res;
}
};
本文探讨了在存在重复元素的情况下如何计算排列序号的问题,通过修改经典排列公式来解决实际问题。
139

被折叠的 条评论
为什么被折叠?



