CF_500B New Year Permutation

B. New Year Permutation
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

User ainta has a permutation p1, p2, ..., pn. As the New Year is coming, he wants to make his permutation as pretty as possible.

Permutation a1, a2, ..., an is prettier than permutation b1, b2, ..., bn, if and only if there exists an integer k (1 ≤ k ≤ n) where a1 = b1, a2 = b2, ..., ak - 1 = bk - 1 and ak < bk all holds.

As known, permutation p is so sensitive that it could be only modified by swapping two distinct elements. But swapping two elements is harder than you think. Given an n × n binary matrix A, user ainta can swap the values of pi and pj (1 ≤ i, j ≤ ni ≠ j) if and only if Ai, j = 1.

Given the permutation p and the matrix A, user ainta wants to know the prettiest permutation that he can obtain.

Input

The first line contains an integer n (1 ≤ n ≤ 300) — the size of the permutation p.

The second line contains n space-separated integers p1, p2, ..., pn — the permutation p that user ainta has. Each integer between 1and n occurs exactly once in the given permutation.

Next n lines describe the matrix A. The i-th line contains n characters '0' or '1' and describes the i-th row of A. The j-th character of thei-th line Ai, j is the element on the intersection of the i-th row and the j-th column of A. It is guaranteed that, for all integers i, j where 1 ≤ i < j ≤ nAi, j = Aj, i holds. Also, for all integers i where 1 ≤ i ≤ nAi, i = 0 holds.

Output

In the first and only line, print n space-separated integers, describing the prettiest permutation that can be obtained.

Sample test(s)
input
7
5 2 4 3 6 7 1
0001001
0000000
0000010
1000001
0000000
0010000
1001000
output
1 2 4 3 6 7 5
input
5
4 2 1 5 3
00100
00011
10010
01101
01010
output
1 2 3 4 5
Note

In the first sample, the swap needed to obtain the prettiest permutation is: (p1, p7).

In the second sample, the swaps needed to obtain the prettiest permutation is (p1, p3), (p4, p5), (p3, p4).

permutation p is a sequence of integers p1, p2, ..., pn, consisting of n distinct positive integers, each of them doesn't exceed n. Thei-th element of the permutation p is denoted as pi. The size of the permutation p is denoted as n.

题意:

给你一个数列,如何经过互换得到一个字典序最小的数列。互换必须依据一定规则,再给出的n*n矩阵上,若Ai,j为1则表示第i个数字与第j个数字可以互换。注意所给矩阵不一定是对称的,但是只要为1就说明可以互换。


题解:

这道题要求字典序尽量小,所以数小的一定要是尽量放到前面。可以涉及多次交换,所以,最开始的思路想要用递归来做,依次找到每一个最小的数尽量向前交换,但是一方面要向里递归,一方面还要保存路径,太复杂没能实现。后来看到了学长的思路,用最短路Floyed来做,很容易就实现了。受到启发,自己又用并查集做了一遍,下面是两种算法:
最短路与并查集思路是一样的,把路径缩短,找到所有能交换的点,方便之后的交换。
Floyed :
三层for循环,简单暴力但是也比较容易理解。有些点可能不能直接交换,遍历之后将中间路径缩短。之后尽可能的将较小的数交换到前面。
代码实现:
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#define MAXN 305


using namespace std;


int A[MAXN][MAXN];
int n;
int arr[MAXN];
char s[MAXN];
int main(){
    scanf("%d", &n);
    for(int i = 0; i < n; ++i){
        scanf("%d", &arr[i]);
    }


    for(int i = 0; i < n; ++i){
        cin >> s;
        for(int j = 0; j < n; ++j){
            A[i][j] = s[j] - '0';
        }
    }
    //Floyed注意k的位置
    for(int k = 0; k < n; ++k){
        for(int i = 0; i < n; ++i){
            for(int j = 0; j < n; ++j){
                //A[i][j]与或(A[i][k] 与 A[k][j])
                A[i][j] |= A[i][k] & A[k][j];
            }
        }
    }


    for(int i = 0; i < n; ++i){
        for(int j = i + 1; j < n; ++j){
            //把大的换到后面
            if(A[i][j] && (arr[i] > arr[j])){
                swap( arr[i],arr[j] );
            }
        }
    }


    for(int i = 0; i < n; ++i){
        printf("%d ", arr[i]);
    }
    return 0;
}

并查集:
既然所有能交换的点都可以双向交换,这和并查集的思想是一样的,那我们可以利用并查集把所有能该交换的点都标记为同一个父亲。之后交换时就很容易判断了。我们在输入时就压缩路径,找到父节点,这样之后我们就不用再次遍历。在时间和空间上都会有很大优化
代码实现:
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#define MAXN 305

using namespace std;

int n;
int father[MAXN];
int arr[MAXN];
bool m_union(int x,int y);
int m_father(int x);
int main()
{
    scanf("%d", &n);
    for(int i = 1; i <= n; i++)
    {
        scanf("%d", &arr[i]);
        father[i] = i;
    }
    getchar();
    for(int i = 1; i <= n; i++)
    {
        for(int j = 1; j <= n; j++)
        {
            char c;
            scanf("%c",&c);
            //每次按位读入,关系是1的两点就绑定起来,操作就是常规的并查集绑定操作
            if((c - '0') == 1)
                m_union( i,j );
        }
        getchar();
    }
    /** \brief
     *
     * \因为通常我们在进行绑定时都是双层for循环遍历,但是在输入时只有1的点才会绑定
     * \会漏掉很大一部分情况。比如可能会出现一些根节点在最后并入某个根节点,而最初
     * \根节点以下的点就不能得到遍历,所以这里需要在更新一遍。
     *
     */
    for(int i=1; i <= n; i++)
        father[i]=m_father(i);
    for(int i = 1; i <= n; i++)
    {
        for(int j = i+1; j <= n; j++)
        {
            if((father[i] == father[j]) && (arr[i] > arr[j]))
                swap(arr[i],arr[j]);
        }
    }
    for(int i = 1; i <= n; i++)
    {
        if( i != n)
            printf("%d ",arr[i]);
        else
            printf("%d\n",arr[i]);
    }
    return 0;
}
bool m_union(int x,int y)
{
    int x1=m_father(x);
    int x2=m_father(y);
    if(x1 != x2)
        father[x2]=x1;
    return true;
}
int m_father(int x)
{
    if(x!=father[x])
        father[x]=m_father(father[x]);
    return father[x];
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值