Hyperion Essbase 简介

转载 2006年05月17日 17:02:00
Hyperion Essbase解决方案与同类产品相比,具有以下几个明显优势:
1.高可用性和重用性
2.分析协作
3.可扩展性和高性能
4.执行强劲计算的能力
5.开放的平台
6.大量读/写控制能力


*强健的分析能力
分析应用要求有一个广泛的性能范围,包括从直观的数据探询到复杂的计算到丰富的查询。除了只读分析外,几乎半数的企业分析应用要求有强健的多用户更新能力。Hyperion Essbase 提供的分析能力足以使用户获得最广泛的分析应用。
Hyperion Essbase 能让企业在一个总的企业数据仓库结构中获取分析应用,或者直接从交易处理应用中,遗留下来的系统中以及外部的数据来源中获取分析应用。在数据仓库应用中,Hyperion Essbase 担当着这样的角色,就是通过基本的桌面工具例如电子表格,报表生成器,查询工具和web 浏览器来提供整个企业范围的数据访问和分析。Hyperion Essbase 提供的分析应用还包括市场销售分析,盈利分析,EIS,报表系统,财务报表合并,预算,计划和预测功能。
用户在标准化他们的整个分析应用平台方面,Hyperion Essbase 能使用户有最大限度的灵活性和选择性。不管用户的分析应用是聚集在一个地方还是分布在世界各地,Hyperion Essbase 随时都会为你解答各种疑难问题。
为了使OLAP服务器更有效率,它除了有强健的计算功能外,还必须具备丰富的查询功能。计算就是把原数据转化为复杂的商业计量单位。一旦计算已经实施了,那么分析就能使最终用户明白是什么在推动着生意的发展。他们能在思考的同时查询和分析原信息及计算过的信息。把丰富的多样化的数据融入到分析应用中,使分析应用不再局限于文本和数字的分析,这样就增强了分析能力并促进了交叉功能间合作决定的形成。

    
*直观的数据探询
Hyperion Essbase 处理和演示数据的方法就如人们所想象的那样:它把获取的信息按规律整理成几种类别,这些类别就叫维,例如可以按时间,地理位置,产品,区域,方法等等来分类。在每一个维里,数据是按等级排列起来的,这样用户在查询时就可以很容易地从一个汇总的信息再查到下面明细的部分 - 例如,可以从每月到每星期再到每天。随着信息的变化,用户可以随意地改变他们的浏览视点。在一个报告中他们可以从行到列地来旋转时间维,他们还可以把数据切成一个面或切成一块来移走那些次要的信息。由于多维模型显示的正是大多数人所想的那样,所以说这种查询是直观的,而也只需要最简单的培训。


*丰富的数据模型
Hyperion Essbase 能使你创建的应用与数据在现实环境中存在的方式相吻合。许多信息要求有多样化的报告关系。例如,一个饮料生产企业,减肥可乐可能就包含在可乐产品类和减肥产品类里面。Hyperion Essbase 能在一个维里支持多种等级,所以创建者设计的应用能和这些报告结构交替吻合。
Hyperion Essbase还能支持各种参差不齐的等级,也就是说各个等级的不同部门可以有不同的信息标准。例如,一个大国的销售组织的管理标准就比小国的多。如果没有丰富的数据模型的支持,要想获取真正的分析应用的广泛多样性,那是很难的或者说是不可能的。

*复杂的OLAP计算
分析应用要求OLAP服务器能够对大数据量进行快速复杂的计算。计算应用中,象预测,性能测试和盈利分析这些应用都对OLAP服务器有很高的要求,所以它必须具备快速,强健,灵活这些特性。Hyperion Essbase 能提供全面的计算区域,包括总计,母式计算,多维交叉计算和过程计算。Hyperion Essbase 内含上百个OLAP能辨识的公式,例如代数式,统计公式,时间序列公式和财务公式。另外,这种多维的计算语言能使你形成惯常的计算逻辑,从而能直接使复杂的业务规范转化为分析应用。
Hyperion Essbase在服务器上实施所有的计算,从而也验证了服务器的能力和可靠性。它为主要的商业计量提供了标准的公式,例如毛利法,这些始终如一地贯穿着整个组织。这也确保了所有的最终用户能采用同一类的商业规范进行运作,当利用单独的电子表格或桌面分析工具进行个人分析时,避免了混乱的产生。

*复杂的OLAP查询
除了基本的OLAP查询,钻入,旋转和切割功能外,Hyperion Essbase还具备服务器环境下多维数据的排序,过滤,分类功能。最终用户可以进行蜂窝式的查询,进行布尔式的过滤,可以按照不同的标准,等级,属性来选取数据,还可以和其他人一起分享查询结果。他们还可以扩大分析范围,或者是在多样化的分析应用中查询,或者从Hyperion Essbase提供的计算信息深入到关系型数据库中的具体的交易信息中去查询。

*属性分析
许多维都包含有一些附加的描述性信息,而这些信息是和维的家庭成员们紧密关联的。例如,在一个产品维里每一个特定的产品都有它自己的包装,颜色和尺寸属性。Hyperion Essbase能让最终用户把无数的属性确定到每个维的每个成员上。这样在分析中就包含有属性的信息了。例如,根据属性我们就可以从一个500,000 SKU 的产品维里挑选出那些红色或蓝色的产品来。

*时间智能
实际上每个分析应用都包含时间维。Hyperion Essbase有足够的灵活性让你可以完全按照你企业的时间表来确定分析时段和时间维的结构。Hyperion Essbase可以让你根据团粒结构的不同标准来下载数据,例如销售数据按每天来提取,预算数据按每星期来提取。Hyperion Essbase还可以让你毫不费力地进行即时分析,例如季度即时分析。

*财务智能
几乎所有的分析应用都包含财务信息,例如销售结果,会计数据,存货余额。Hyperion Essbase采用的是特别为分析应用而设计的内置财务智能系统来储存财务数据。例如Hyperion Essbase知道收入和费用帐户差异分析的不同,它还能准确地计算出存货余额。利用可选择的Hyperion 货币转换系数,Hyperion Essbase能自动地把本地货币转换成报告所需的货币,从而进行预算,预测,报告,报表合并和其他的一些分析应用。

*连接的报告对象
连接的报告对象是指用户可以把一些附加的描述信息粘贴到任何一个数据值上。其他人可以看到这个粘贴对象,而且他也可以反馈回去另外的粘贴对象。这个粘贴物可以是简单的文本文件,也可以是电子表格,还可以是丰富的多媒体内容例如音频和视频。连接体的典型用途是为预算报告,预测报告,演示报告和EIS系统提供注释说明。

*多用户读写访问
许多分析应用象预算,计划,预测和作模型等等,这些都要求多个用户能同时更新由OLAP服务器管理的数据。例如,在一个预算周期内多个用户必须能同时改变他们的预算并计算出这个预算的制订对公司业绩的影响。Hyperion Essbase能让他们同时实施计算和再计算的功能。例如,他们可以分析出广告费用的变化在多样化的产品列里对产品销售的影响。几乎半数的分析应用都要求有多用户更新和计算能力,而且超过60%的Hyperion Solutions 用户使用Hyperion Essbase来进行多用户读写分析应用,除了那些只需要只读分析应用的之外。
Hyperion Essbase能支持对OLAP信息的高品质的多用户即时读写访问,使数据更加完善。如果一个用户在查询信息,同时另一个用户正在更改信息,那么第一个用户看到的是查询开始时被提交的数据。这就确保了所有用户使用的数据是正确的,连贯的。



*对查询的快速反应
为了使分析应用更有效率,它必须做到:通过直观的,反复的查询,用户能轻松自如地分析数据,而无需任何等待。大多数用户利用Hyperion Essbase在一秒内就能获得查询结果。即使是最复杂的查询也只需要几秒钟。核准的OLAP基准结果显示,Hyperion Essbase在一个有四个处理器的服务器上每分钟能进行6,800次复杂的查询 ¾ 每个查询的平均反应时间只需0.00876秒。

*多线程的结构
Hyperion Essbase设置了一个可升级的多线程结构用来对用户的要求作出快速有效的反应。不能胜任的操作系统线程通过多个处理器被发送到强大的对称多处理硬件平台上,在此平台上利用最小的资源消耗为成百上千个并发用户提供快速的反应时间。

*灵活的计算
Hyperion Essbase具备可升级性能并以此来支持最大型的企业分析应用的需求。动态的和平行的计算能使你创建出大块的分析应用平台,用以分析数百亿计的数据。此外,利用Essbase还可通过选择“预先计算”、“即时计算”或“即时计算并存储”等方式来增强分析、查询性能。


*完备的安全性
Essbase支持强健的用户和数据安全性,其访问控制可控制到存储单元一级。可授予的权限包括:无访问权限、只读访问和读/写访问。

相关文章推荐

ORACLE EPM 11.1.2.3 Hyperion planning Essbase 安装配置全纪录

1、虚拟机信息: 操作系统:Windows2008 Server(64位) IP地址:192.168.56.222 本地安装Oracle11g数据库,中文字符集。 内存:6G 硬盘可用空间...

专家分析Oracle-Hyperion并购事件

http://sysapp.51cto.com  2007-03-16 11:08  Tim DiChiara  IT专家网  我要评论(0) 摘要:人们已经开始解决令人震惊的Oracle收...

Oracle Essbase入门系列(四)

感谢原创作者的无私分享,谢谢。

Oracle+Hyperion+ESSBASE

  • 2012-09-04 16:40
  • 1.91MB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)