K.Bro Sorting HDU - 5122 (思维题)

本文介绍了一种名为K.BroSorting的排序算法,并详细解释了其工作原理及实现过程。该算法通过选择特定元素并对其进行调整来实现序列的排序,文章还提供了具体的实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Matt’s friend K.Bro is an ACMer.

Yesterday, K.Bro learnt an algorithm: Bubble sort. Bubble sort will compare each pair of adjacent items and swap them if they are in the wrong order. The process repeats until no swap is needed.

Today, K.Bro comes up with a new algorithm and names it K.Bro Sorting.

There are many rounds in K.Bro Sorting. For each round, K.Bro chooses a number, and keeps swapping it with its next number while the next number is less than it. For example, if the sequence is “1 4 3 2 5”, and K.Bro chooses “4”, he will get “1 3 2 4 5” after this round. K.Bro Sorting is similar to Bubble sort, but it’s a randomized algorithm because K.Bro will choose a random number at the beginning of each round. K.Bro wants to know that, for a given sequence, how many rounds are needed to sort this sequence in the best situation. In other words, you should answer the minimal number of rounds needed to sort the sequence into ascending order. To simplify the problem, K.Bro promises that the sequence is a permutation of 1, 2, … , N .
Input
The first line contains only one integer T (T ≤ 200), which indicates the number of test cases. For each test case, the first line contains an integer N (1 ≤ N ≤ 10 ^6).

The second line contains N integers a i (1 ≤ a i ≤ N ), denoting the sequence K.Bro gives you.

The sum of N in all test cases would not exceed 3 × 10 ^6.
Output
For each test case, output a single line “Case #x: y”, where x is the case number (starting from 1), y is the minimal number of rounds needed to sort the sequence.
Sample Input
2
5
5 4 3 2 1
5
5 1 2 3 4
Sample Output
Case #1: 4
Case #2: 1

Hint
In the second sample, we choose “5” so that after the first round, sequence becomes “1 2 3 4 5”, and the algorithm completes.

大致题意:给你n个不同的数,范围1~n,然后每次你可以选择一个数,然后从它开始向后面将相邻的两个数进行比较交换,小的放前面,大的放后面,问最少需要选几次,才能使得这个序列有序。

思路:很容易可以看出当位置i前面有数比它大时,我们就必须选择,当有数比它小时,我们还需考虑i后面的数有没有比这个小的,如果没有我们也就不用选择了。所以我们可以从最后一位数开始往前扫一遍,先将最后一位数的值记为Min,如果有碰到某个数比MIn小的话,num++,然后将Min的值改变记为这个数。那么我们所找出来的这num个数就不用去选择了(因为选择这些数对结果不会产生影响,只会做无用功),最终答案即为n-num。

代码如下

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#include<vector>
#include<cmath>
#include<string>
#define LL long long  
const int maxn =1e6+5;
using namespace std;
int a[maxn];
int main()
{
    int T;
    int n;
    scanf("%d",&T);
    for(int cas=1;cas<=T;cas++)
    {
        scanf("%d",&n);
        for(int i=1;i<=n;i++)
        scanf("%d",&a[i]);
        int sum=1;
        int minn=a[n];
        for(int i=n-1;i>=1;i--)
        {
            if(a[i]<minn)
            {
                minn=a[i];
                sum++;
            }
        }
        printf("Case #%d: %d\n",cas,n-sum);
    }
    return 0;

}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值