一元三次方程求根公式的解法

转载 2007年10月08日 16:40:00

      人类很早就掌握了一元二次方程的解法,但是对一元三次方程的研究,则是进展缓慢。古代中国希腊印度等地的数学家,都曾努力研究过一元三次方程,但是他们所发明的几种解法,都仅仅能够解决特殊形式的三次方程,对一般形式的三次方程就不适用了。 
      在十六世纪的欧洲,随着数学的发展,一元三次方程也有了固定的求解方法。在很多数学文献上,把三次方程的求根公式称为“卡尔丹诺公式”,这显然是为了纪念世界上第一位发表一元三次方程求根公式的意大利数学家卡尔丹诺。那么,一元三次方程的通式解,是不是卡尔丹诺首先发现的呢?历史事实并不是这样。 
     数学史上最早发现一元三次方程通式解的人,是十六世纪意大利的另一位数学家尼柯洛·冯塔纳(Niccolo Fontana)。 冯塔纳出身贫寒,少年丧父,家中也没有条件供他念书,但是他通过艰苦的努力,终于自学成才,成为十六世纪意大利最有成就的学者之一。由于冯塔纳患有“口吃”症,所以当时的人们昵称他为“塔尔塔里亚”(Tartaglia), 也就是意大利语中“结巴”的意思。后来的很多数学书中,都直接用“塔尔塔里亚”来称呼冯塔纳。
     塔尔塔利亚(口吃者)在从事数学教学工作中,有个数学老师向他请教两道一元三次方程,塔尔塔利亚全身心投入,废寝忘食,居然解出来了,并因此找到了解一元三次方程的方法。于是,塔尔塔利亚向外界公开宣称,他已经知道了一元三次方程的解法,但不能公开自己的步骤。这时有一个叫菲俄的人也宣称,他也找到了一元三次方程的办法,并说他的方法得到了当时著名数学家费罗的真传。
他们二人谁真谁假?谁优谁劣?于是,1535年2月22日,在意大利有名的米兰大教堂,举行了一次仅有塔尔塔利亚和菲俄参加的数学竞赛。他们各自给对方出30道题,谁解得对解得快谁就得胜。两个小时后,塔尔塔利亚解完了全部30道题,而菲俄却一道题也解不出来。塔尔塔利亚大获全胜。
      原来,一元三次方程是1504年意大利数学家巴巧利引起的,他说:“x3+mx=n,x3+n=mx之不可解,正像化圆为方问题一样。”谁知此问题提出不久,数学家费罗就解出来了,他将方法透露给自己的学生菲俄。于是,当塔尔塔利亚宣称他找到一元三次方程解法时,就出现了要进行竞赛的事情。
塔尔塔利亚面对著名的学者,他有些心虚,因为他的方法还不完善。他在竞赛之前的10天,塔尔塔利亚彻夜不眠,直至黎明。当他头昏脑胀,走出室外,呼吸新鲜空气,顿时他的思路豁然开朗,多日的深思熟虑,终于取得成果。为了使自己的成果更完善,塔尔塔利亚又艰苦努力了6年,在1514年真正找到了一元三次方程的解法。很多人请求他把这种方法公布出来,但遭到拒绝,原来,塔尔塔利亚准备把自己的发明发现写成一本专著,以便流传后世。
当时米兰还有一位对一元三次方程非常感兴趣的数学家卡尔丹,苦苦央求塔尔塔利亚把解法告诉他,并起誓发愿,决不泄露。1539年,塔尔塔利亚被卡尔丹的至诚之心所动,就把方法传授给他。卡尔丹没有遵守自己的诺言,而是写成一本书,1545年在纽伦堡出版发行,在书中,卡尔丹公布了一元三次方程的解法,并声称是自己的发明。于是人们就将一元三次方程的求根公式称为“卡尔丹公式”。
卡尔丹的背信弃义激怒了塔尔塔利亚,他向卡尔丹宣战,要求进行公开竞赛。双方各拟31道试题,限期15天完成。卡尔丹临阵怯场,只派了一名高徒应战。结果塔尔塔利亚在7天之内就解出了大部分试题,而卡尔丹的高徒仅做对一道。接着,二人进行了激烈的论辩,人们终于明白了真相,塔尔塔利亚才是一元三次方程求根公式的真正发明人。
      塔尔塔利亚经过这场风波之后,准备心平气和地把自己的成果写成一部数学专著,可是他已经心力憔悴,1557年,他没有实现自己的愿望就与世长辞了。

      一元三次方程的求根公式用通常的演绎思维是作不出来的,用类似解一元二次方程的求根公式的配方法只能将型如ax^3+bx^2+cx+d+0的标准型一元三次方程形式化为x^3+px+q=0的特殊型。
    一元三次方程的求解公式的解法只能用归纳思维得到,即根据一元一次方程、一元二次方程及特殊的高次方程的求根公式的形式归纳出一元三次方程的求根公式的形式。我归纳出来的形如 x^3+px+q=0的一元三次方程的求根公式的形式应该为x=A^(1/3)+B^(1/3)型,即为两个开立方之和。归纳出了一元三次方程求根公式的形式,下一步的工作就是求出开立方里面的内容,也就是用p和q表示A和B。方法如下:
(1)将x=A^(1/3)+B^(1/3)两边同时立方可以得到
(2)x^3=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3))
(3)由于x=A^(1/3)+B^(1/3),所以(2)可化为
x^3=(A+B)+3(AB)^(1/3)x,移项可得
(4)x^3-3(AB)^(1/3)x-(A+B)=0,和一元三次方程和特殊型x^3+px+q=0作比较,可知
(5)-3(AB)^(1/3)=p,-(A+B)=q,化简得
(6)A+B=-q,AB=-(p/3)^3
(7)这样其实就将一元三次方程的求根公式化为了一元二次方程的求根公式问题,因为A和B可以看作是一元二次方程的两个根,而(6)则是关于形如ay^2+by+c=0的一元二次方程两个根的韦达定理,即
(8)y1+y2=-(b/a),y1*y2=c/a
(9)对比(6)和(8),可令A=y1,B=y2,q=b/a,-(p/3)^3=c/a
(10)由于型为ay^2+by+c=0的一元二次方程求根公式为
y1=-(b+(b^2-4ac)^(1/2))/(2a)
y2=-(b-(b^2-4ac)^(1/2))/(2a)
可化为
(11)y1=-(b/2a)-((b/2a)^2-(c/a))^(1/2)
y2=-(b/2a)+((b/2a)^2-(c/a))^(1/2)
将(9)中的A=y1,B=y2,q=b/a,-(p/3)^3=c/a代入(11)可得
(12)A=-(q/2)-((q/2)^2+(p/3)^3)^(1/2)
B=-(q/2)+((q/2)^2+(p/3)^3)^(1/2)
(13)将A,B代入x=A^(1/3)+B^(1/3)得
(14)x=(-(q/2)-((q/2)^2+(p/3)^3)^(1/2))^(1/3)+(-(q/2)+((q/2)^2+(p/3)^3)^(1/2))^(1/3)

后记:

    一、(14)只是一元三方程的一个实根解,按韦达定理一元三次方程应该有三个根,不过按韦达定理一元三次方程只要求出了其中一个根,另两个根就容易求出了。由于计算太复杂及这个问题历史上已经解决,我不愿花过多的力气在上面,我做这项工作只是想考验自己的智力,所以只要关键的问题解决了另两个根我就没有花力气去求解。
    二、我也曾用类似的方法去求解过一元四次方程的解,具体就是假设一元四次方程的根的形式为x=A^(1/4)+B^(1/4)+C^(1/4),有一次我好象解出过,不过后来多次求解好象说明这种方法求解一元四次方程解不出。不过我认为如果能进一步归纳出A、B、C的形式,应该能求出一元四次方程的求根公式的。由于计算实在太复杂及这个问题古人已经解决了,我后来一直没能完成这项工作。
    三、通过求解一元三次方程的求根公式,我获得了一个经验,用演绎法(就是直接推理)求解不出来的问题,换一个思维,用归纳法(及通过对简单和特殊的同类问题的解法的归纳类比)常常能取得很好的效果。事实上人类常常是这样解决问题的,大科学家正是这样才成为大科学家的。

 

 

一元三次方程求根公式的解法

一元三次方程求根公式的解法-------摘自高中数学网站一元三次方程的求根公式用通常的演绎思维是作不出来的,用类似解一元二次方程的求根公式的配方法只能将型如ax^3+bx^2+cx+d+0的标准型一元...
  • yzsind
  • yzsind
  • 2005年05月22日 21:22
  • 14180

【openjudge】一元三次方程求解(分治算法)

一元三次方程求解总时间限制: 1000ms 内存限制: 65536kB 描述 有形如:ax3+bx2+cx+d=0 这样的一个一元三次方程。给出该方程中各项的系数(a,b,c,d 均为实数),...
  • zhhe0101
  • zhhe0101
  • 2016年10月15日 16:58
  • 1193

一元三次方程求解c++实现

typedef  double Number; class CubicRealPolynomial { public:     static Number computeDiscriminan...
  • zg260
  • zg260
  • 2014年11月21日 15:36
  • 1474

某叶C语言学习上重大的一步——一元三次方程求解

目前某叶编的最难的程序了......感觉算是跨越吧,之前最难的是一元二次方程求解,虽然是最“难”的,只是因为最长,但是写起来还是很轻松的   不过一元三次方程可一点都不轻松,很累,因为没学过一元三次方...
  • wangyx1995
  • wangyx1995
  • 2014年04月02日 17:28
  • 1446

一元三次方程求根公式详细逐步推导

欢迎使用Markdown编辑器写博客本Markdown编辑器使用StackEdit修改而来,用它写博客,将会带来全新的体验哦: Markdown和扩展Markdown简洁的语法 代码块高亮 图片链接和...
  • liu_if_else
  • liu_if_else
  • 2016年01月27日 06:47
  • 715

卡尔丹公式求解一元三次方程的新解法源代码及演示程序

  • 2009年07月03日 15:40
  • 244KB
  • 下载

使用牛顿迭代法求根 一元三次方程的根

牛顿迭代法(Newton’s method)又称为牛顿-拉夫逊方法(Newton-Raphson method),它是牛顿在17 世纪提出的一种在实数域和复数域上近似求解方程的方法。多数方程不存在求根...
  • guoguojune
  • guoguojune
  • 2013年01月28日 13:32
  • 8454

一元三次方程的解法

  • 2013年03月13日 17:23
  • 11KB
  • 下载

一元三次方程-盛金公式求解

原理参考-百度百科(http://baike.baidu.com/link?url=eA-bEvbcOBM2XmA4rzIG-lgci4MQdQcr7lCzCHBW-qG-qcPaDNovXp_jYx...
  • u014570007
  • u014570007
  • 2017年01月18日 13:35
  • 725

用盛金公式求解一元三次方程

解一元三次方程一般用盛金公式求解,算法高效且求出来的解精确。     百度百科关于盛金公式有如下解释: 盛金公式   Shengjin's Formulas   一元三次方程aX^3+bX^...
  • menggucaoyuan
  • menggucaoyuan
  • 2011年08月11日 21:10
  • 3258
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:一元三次方程求根公式的解法
举报原因:
原因补充:

(最多只允许输入30个字)