Andrew学习笔记--第一周

原创 2016年08月28日 16:53:09

https://www.coursera.org/learn/machine-learning/lecture/1VkCb/supervised-learning

点击打开链接

Andrew第一讲:监督学习,分类与回归的区别;supervised learning


(视频截图)

回归问题是:根据历史数据,预测可能的输出值。

分类问题:0,1,给于每类数据特定的标签。对应未知数据进行分类属于哪一类。

------------------------------------------------------------------------------2016-8-28:17:02-----------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------2016/09/03 14:14----------------------------------------------------------------------------------------------------------------------------

非监督unsupervised learning

事先不知道样本归属,由算法自动分出类别。

Model and Cost Function

https://www.coursera.org/learn/machine-learning/lecture/db3jS/model-representation
点击打开链接

线性回归

-------------------------------------------------------------------------------------------------------------------------------

-------------------------------------------------------------------cost function


------------------------------ 寻找参数使损伤函数J最小。


---------------------------损伤函数计算-(最小均方误差)

https://www.coursera.org/learn/machine-learning/lecture/8SpIM/gradient-descent

点击打开链接

随机梯度下降



版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

stanford机械学习笔记(第一周)

  • 2015年08月31日 21:00
  • 4.68MB
  • 下载

《深度学习——Andrew Ng》第二课第一周编程作业

Initialization作业通过三种不同的初始化参数的方式(zero、random、he),对神经网络进行参数初始化,通过对比,得出每种初始化方式的特征。最后结论为he初始化是最好的方式。...

Machine Learning(Stanford)| 斯坦福大学机器学习笔记--第一周(6.线性代数复习)

本博客内容来自Coursera上Andrew Ng老师的机器学习课程的。其实一开始在上课的时候我就在本子上做过一遍笔记,这次在博客上再做一遍是对课程的复习巩固,加深印象。--这篇博客的主要内容是介绍了...

用Python玩转数据第一周学习笔记のPython基础

在慕课大学看到南京大学的张莉老师开授Pyhton课程,本文用于记录学习笔记及作业 用的IDE是python(x,y) 主要使用的是里面的Spyder,界面如下图 第一个P...

Machine Learning(Stanford)| 斯坦福大学机器学习笔记--第一周(3.代价函数直观理解)

本博客内容来自Coursera上Andrew Ng老师的机器学习课程的。其实一开始在上课的时候我就在本子上做过一遍笔记,这次在博客上再做一遍是对课程的复习巩固,加深印象。--这篇博客的主要内容是介绍了...

Android应用界面开发_学习笔记_第一周

快捷键: 1、看继承的父类:cmd+左击,返回上一级:cmd+ [ ; 2、提示功能:option + return;安装好AS开发环境 以及 genimotion模拟器,运行最简单的androi...

Machine Learning(Stanford)| 斯坦福大学机器学习笔记--第一周(4.梯度下降)

一.Gradient Descent(梯度下降) 之前已经定义了代价函数J,为了最小化代价函数,接下来将介绍梯度下降(Gradient Descent)这种算法。梯度下降是很常用的算法,它不仅被用在...
  • tiweeny
  • tiweeny
  • 2017年06月24日 23:22
  • 141

斯坦福大学机器学习笔记--第一周(5.线性回归的梯度下降)

一.Gradient Descent For Linear Regression(线性回归的梯度下降) 在前面我们谈到了梯度下降算法是很常用的算法,经常被用在线性回归模型、平方误差代价函数上...
  • tiweeny
  • tiweeny
  • 2017年06月24日 23:27
  • 151

斯坦福大学机器学习笔记 第一周

What is Machine Learning? Two definitions of Machine Learning are offered. Arthur Samuel described ...

第一周-Coursera/Stanford机器学习课程学习笔记-单变量线性回归

针对Coursera上面Andrew Ng的机器学习课程第一周内容的学习笔记。包括机器学习简介和单变量线性回归。简介包括机器学习定义、监督式学习和非监督式学习的介绍,单变量线性回归问题按步骤介绍了其假...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Andrew学习笔记--第一周
举报原因:
原因补充:

(最多只允许输入30个字)