关闭

Andrew学习笔记--第一周

193人阅读 评论(0) 收藏 举报
分类:

https://www.coursera.org/learn/machine-learning/lecture/1VkCb/supervised-learning

点击打开链接

Andrew第一讲:监督学习,分类与回归的区别;supervised learning


(视频截图)

回归问题是:根据历史数据,预测可能的输出值。

分类问题:0,1,给于每类数据特定的标签。对应未知数据进行分类属于哪一类。

------------------------------------------------------------------------------2016-8-28:17:02-----------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------2016/09/03 14:14----------------------------------------------------------------------------------------------------------------------------

非监督unsupervised learning

事先不知道样本归属,由算法自动分出类别。

Model and Cost Function

https://www.coursera.org/learn/machine-learning/lecture/db3jS/model-representation

线性回归

-------------------------------------------------------------------------------------------------------------------------------

-------------------------------------------------------------------cost function


------------------------------ 寻找参数使损伤函数J最小。


---------------------------损伤函数计算-(最小均方误差)

https://www.coursera.org/learn/machine-learning/lecture/8SpIM/gradient-descent

点击打开链接

随机梯度下降



0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:9210次
    • 积分:332
    • 等级:
    • 排名:千里之外
    • 原创:21篇
    • 转载:0篇
    • 译文:4篇
    • 评论:0条
    文章分类