Andrew学习笔记--第一周

原创 2016年08月28日 16:53:09

https://www.coursera.org/learn/machine-learning/lecture/1VkCb/supervised-learning

点击打开链接

Andrew第一讲:监督学习,分类与回归的区别;supervised learning


(视频截图)

回归问题是:根据历史数据,预测可能的输出值。

分类问题:0,1,给于每类数据特定的标签。对应未知数据进行分类属于哪一类。

------------------------------------------------------------------------------2016-8-28:17:02-----------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------2016/09/03 14:14----------------------------------------------------------------------------------------------------------------------------

非监督unsupervised learning

事先不知道样本归属,由算法自动分出类别。

Model and Cost Function

https://www.coursera.org/learn/machine-learning/lecture/db3jS/model-representation

线性回归

-------------------------------------------------------------------------------------------------------------------------------

-------------------------------------------------------------------cost function


------------------------------ 寻找参数使损伤函数J最小。


---------------------------损伤函数计算-(最小均方误差)

https://www.coursera.org/learn/machine-learning/lecture/8SpIM/gradient-descent

点击打开链接

随机梯度下降



版权声明:本文为博主原创文章,未经博主允许不得转载。

Coursera上的Andrew Ng《机器学习》学习笔记Week1

Coursera上的Andrew Ng《机器学习》学习笔记Week1 作者:雨水/家辉,日期:2017-01-17,CSDN博客:http://blog.csdn.net/gobitan 注:本课...
  • gobitan
  • gobitan
  • 2017年01月17日 17:27
  • 789

Andrew Ng 机器学习笔记(六)

朴素贝叶斯算法 在上节课中,Andrew将邮件过滤系统中使用了朴素贝叶斯算法如何将邮件进行垃圾分类。有两个性质,一个是每个特征都只有0和1的取值,也就是说只有出现和不出现这两种情况;第二,特征向量...
  • chixujohnny
  • chixujohnny
  • 2016年03月13日 21:00
  • 419

Andrew Ng公开课学习笔记——总目录

前言  这段时间看完了Andrew Ng教授的机器学习公开课,学到了一些东西,记录下来,算是对这段学习的总结吧。有理解的不对的地方,请大家多指正。学习材料链接地址:http://open.163.co...
  • liumingpei
  • liumingpei
  • 2017年10月16日 21:23
  • 200

andrew ng机器学习笔记

第五周Neural Networks: Learning cost function m组数据,图片里面有四层,L=4,最后一层K是输出层的数据,也是sL。 Backpropagation al...
  • artemisrj
  • artemisrj
  • 2015年11月21日 15:31
  • 556

Andrew Ng机器学习笔记1

吴恩达机器学习课程的学习笔记~
  • panglinzhuo
  • panglinzhuo
  • 2016年04月26日 16:15
  • 1369

监督学习之再聊支持向量机——Andrew Ng机器学习笔记(六)

内容提要这篇博客的主要讲的是SVM对于非线性分类情况的办法和有噪声时的处理办法,最后介绍了拉格朗日对偶问题的求解算法,主要的标题有: 1. 核函数(SVM非线性分类的解决办法) 2. 松弛变量处理...
  • A_cainiao_A
  • A_cainiao_A
  • 2016年01月02日 12:53
  • 1171

Coursera-吴恩达-机器学习-(第5周笔记)Neural Networks——Learning

此系列为 Coursera 网站Andrew Ng机器学习课程个人学习笔记(仅供参考) 课程网址:https://www.coursera.org/learn/machine-learning ...
  • malele4th
  • malele4th
  • 2018年01月15日 20:04
  • 98

Andrew Ng 机器学习笔记(二)

监督学习的应用:梯度下降 梯度下降算法思想: 先选取一个初始点,他可能是0向量,也可能是个随机点。在这里选择图中这个+点吧。 然后请想象一下:如果把这个三位图当成一个小山公园,而你整站在这个+...
  • chixujohnny
  • chixujohnny
  • 2016年03月09日 16:27
  • 614

Andrew NG机器学习课程笔记系列之——机器学习之逻辑回归(Logistic Regression)

1. Classification 这篇文章我们来讨论分类问题(classification problems),也就是说你想预测的变量 y 是一个离散的值。我们会使用逻辑回归算法来解决分类问题。 之...
  • mydear_11000
  • mydear_11000
  • 2016年03月12日 13:30
  • 1456

Andrew Ng机器学习入门学习笔记(六)之支持向量机(SVM)

一.支持向量机的引入支持向量机(SVM)是一种极受欢迎的监督学习算法,为了引入支持向量机,我们首先从另一个角度看逻辑回归。1.从单个样本代价考虑假设函数hθ(x)=11+e−θTxh_\theta(x...
  • SCUT_Arucee
  • SCUT_Arucee
  • 2015年12月28日 15:20
  • 4685
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Andrew学习笔记--第一周
举报原因:
原因补充:

(最多只允许输入30个字)