欢迎使用CSDN-markdown编辑器

原创 2017年11月15日 11:35:39

scikit-learn:基于Python语言的机器学习工具

scikit-learn(中文网站)是python中一个非常强大的开源工具包,集合了机器学习中经典的分类、回归、聚类算法及数据处理方法,是数据挖掘和数据分析领域的简单而有效的开发工具。

  • 分类算法 Classification
    支持向量机 SVM
    最近邻法
    gradient boosting
  • 回归算法 Regression
    支持向量回归 SVR
    Lasso
  • 聚类算法 Clustering
    K-Means
    谱聚类 spectral clustering
    mean-shift
    DBSCAN
  • 特征工程方法
    sklearn 特征工程

    • 数据预处理
      from sklearn.preprocessing import *
      1.数据标准化 StandardScaler
      2.区间缩放法 MinMaxScaler
      3.归一化 Normalizer
      4.特征二值化(定量特征) Binarizer
      5.One-Hot编码(定性特征或类型特征) OneHotEncoder
      6.缺失值计算 Imputer
      7.数据变换 PolynomialFeatures

    • 特征选择
      from sklearn.feature_selection import *
      1.方差选择法 VarianceThreshold(threshold=3)
      2.相关系数法 SelectKBest()
      3.卡方检验 SelectKBest(chi2)
      4.互信息法 SelectKBest()
      5.递归特征消除法 RFE(estimator = LogisticRefression(), n_features_to_select=2)
      6.基于惩罚项的特征选择法 SelectFromModel(LogisticRegression(penalty=”l1”, C=0.1))
      6.基于树模型的特征选择法 SelectFromModel(GradientBoostingClassifier())

    • 降维
      from sklearn.decomposition import *
      1.主成分分析法 PCA
      2.线性判别分析法 LDA

数据特征相关方法说明如下图

参数列表 类别 fit方法是否有用 说明
sklearn.preprocessing StandardScaler 特征 无监督 Y 标准化
sklearn.preprocessing MinMaxScaler 特征 无监督 Y 区间缩放
sklearn.preprocessing Normalizer 特征 无信息 N 归一化
sklearn.preprocessing Binarizer 特征 无信息 N 定量特征二值化
sklearn.preprocessing OneHotEncoder 特征 无监督 Y 定性特征编码
sklearn.preprocessing Imputer 特征 无监督 Y 缺失值计算
sklearn.preprocessing PolynomialFeatures 特征 无信息 N 多项式变换(fit方法仅仅生成了多项式的表达式)
sklearn.preprocessing FunctionTransformer 特征 无信息 N 自定义函数变换(自定义函数在transform方法中调用)
sklearn.feature_selection VarianceThreshold 特征 无监督 Y 方差选择法
sklearn.feature_selection SelectKBest 特征/特征+目标值 无监督/有监督 Y 自定义特征评分选择法
sklearn.feature_selection SelectKBest+chi2 特征+目标值 有监督 Y 卡方检验选择法
sklearn.feature_selection RFE 特征+目标值 有监督 Y 递归特征消除法
sklearn.feature_selection SelectFromModel 特征+目标值 有监督 Y 自定义模型训练选择法
sklearn.decomposition PCA 特征 无监督 Y PCA降维
sklearn.lda LDA 特征+目标值 有监督 Y LDA降维

版权声明:本文为博主原创文章,未经博主允许不得转载。

欢迎使用CSDN-markdown编辑器-

欢迎使用Markdown编辑器写博客本Markdown编辑器使用StackEdit修改而来,用它写博客,将会带来全新的体验哦: Markdown和扩展Markdown简洁的语法 代码块高亮 图片链接和...
  • qq_29455571
  • qq_29455571
  • 2017年12月24日 22:55
  • 63

[]欢迎使用CSDN-markdown编辑器

欢迎使用Markdown编辑器写博客本Markdown编辑器使用StackEdit修改而来,用它写博客,将会带来全新的体验哦: Markdown和扩展Markdown简洁的语法 代码块高亮 图片链接和...
  • naihejiang
  • naihejiang
  • 2016年10月17日 10:53
  • 92

欢迎使用 CSDN-markdown 编辑器

欢迎使用Markdown编辑器写博客本
  • thither_shore
  • thither_shore
  • 2016年08月10日 10:29
  • 331

欢迎使用CSDN-markdown编辑器

欢迎使用Markdown编辑器写博客本Markdown编辑器使用StackEdit修改而来,用它写博客,将会带来全新的体验哦: Markdown和扩展Markdown简洁的语法 代码块高亮 图片链接和...
  • testcs_dn
  • testcs_dn
  • 2015年01月30日 21:28
  • 18326

欢迎使用CSDN-markdown编辑器】

sadf测试MarkDown编辑器 sadf测试MarkDown编辑器 测试MarkDown编辑器测试MarkDown编辑器 测试MarkDown编辑器测试MarkDown编辑器测试M...
  • xlwang1
  • xlwang1
  • 2015年11月28日 21:39
  • 82

欢迎使用CSDN-markdown编辑器--

欢迎使用Markdown编辑器写博客 本Markdown编辑器使用StackEdit修改而来,用它写博客,将会带来全新的体验哦: Markdown和扩展Markdown简洁的语法 代码块高亮 图...
  • qq_34796981
  • qq_34796981
  • 2018年01月31日 17:01
  • 53

欢迎使用CSDN-markdown编辑器.

欢迎使用Markdown编辑器写博客(莫名其妙发出去的的第一篇blog) 本Markdown编辑器使用StackEdit修改而来,用它写博客,将会带来全新的体验哦: Markdown和扩展Mar...
  • DYT_B
  • DYT_B
  • 2017年08月02日 10:51
  • 137

!欢迎使用CSDN-markdown编辑器

欢迎使用Markdown编辑器写博客 本Markdown编辑器使用StackEdit修改而来,用它写博客,将会带来全新的体验哦: Markdown和扩展Markdown简洁的语法 代码块高亮 图...
  • g138988
  • g138988
  • 2018年02月07日 21:26
  • 18

#欢迎使用CSDN-markdown编辑器#

欢迎使用Markdown编辑器写博客本Markdown编辑器使用StackEdit修改而来,用它写博客,将会带来全新的体验哦: Markdown和扩展Markdown简洁的语法 代码块高亮 图片链接和...
  • l_nan
  • l_nan
  • 2017年12月24日 10:50
  • 52

*欢迎使用CSDN-markdown编辑器

欢迎使用Markdown编辑器写博客 本Markdown编辑器使用StackEdit修改而来,用它写博客,将会带来全新的体验哦: Markdown和扩展Markdown简洁的语法 代码块高亮 图...
  • Menghuanjiaobu24
  • Menghuanjiaobu24
  • 2017年12月26日 18:37
  • 38
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:欢迎使用CSDN-markdown编辑器
举报原因:
原因补充:

(最多只允许输入30个字)