关闭

[置顶] 模式识别(Pattern Recognition)学习笔记(十八)--感知器与神经网络

标签: 人工神经网络人工智能神经元多层感知器
1530人阅读 评论(0) 收藏 举报
分类:

1.什么是人工神经网络(ANN)?

1.1ANN的由来

       在人工智能中,有两个研究方向:1)先试图对人类或其他高等动物的自然智能建立一定的数学模型,然后借助这种方式来帮助理解智能活动的奥秘;2)通过数学手段,利用计算机建立具备一定智能的机器。回顾下前面学习的贝叶斯决策和线性的非线性的判别方法,可以发现,它们显然对应于第二种研究方向,都是直接从数学的角度来分析数据的分布,建立线性的或非线性的判别函数,而并非直接与自然智能相联系。

       早在上世纪中,人们就开始了神经系统的研究,自上世纪80年代以来,人们开始大量的借用神经生理学的概念来研究人工智能,于是这时就诞生出了“人工神经网络”这门新兴学科,它的到来为模式识别方法的研究体系注入了新鲜的血液,人工神经网络(Artificial Neural Network),简称神经网络。

       神经网络的两大用法:1)分类器:学习机;2)作原系统的等效模型系统,主要用在智能控制上。

1.2ANN的基本思想

       借鉴于人或动物自然神经系统的构造和机理,神经系统由大量神经元构成,结构复杂,外加上人们再对这一网络建立一定的算法和数学模型,然后让它能够实现基于数据的模式识别、函数映射等智能化功能,这样的网络我们称之为人工神经网络。

      不同的数学模型可以得到不同的神经网络方法,而本篇学习的多层感知器(明显的跟前面学习的感知器有关,需要的可以回头查看复习)是其中最具影响力的一种模型,它能够从训练样本中学习任意复杂度的非线性映射的能力,而且可以实现复杂的非线性判别函数,因此,从模式识别的角度来看,它可以看作是一种通用的非线性分类器设计方法。

2.什么是神经元?

       神经元作为神经系统的基本组成单位,又叫神经细胞,一个典型的神经元由以下几部分组成:


       其中,细胞体是神经元的主体,主要负责信息加工;树突是细胞体外围的大量微小分支,可达10^3个数量级,主要作用是从外界接收信息;轴突作为神经元的输出,将输出传递给其他神经元;突触是一个神经元与另一个神经元的树突“连接”(注意,并非物理意义上的连接)的部位,它的状态影响着信号传递的效率。

       在一个神经系统中,往往有大量大量的神经元,人类的神经系统中各种神经元的总数可以达到10^10-10^11个,神经元之间通过突触连接,就构成了复杂的神经网络系统。

2.感知器神经元

       下面来看一个神经元是如何工作的:

        这是一个简化了的模型,作为ANN的基础,实际中神经元的活动要复杂的多,用公式表示:

            (1)

其中,x是神经元的输入,w是神经元的权重,是单位阶跃函数(0或1),作为神经元的传递函数,也可以用符号函数(1或-1);

       几何角度上来看,感知器神经元就是用超平面(公式如下)将特征空间划分成两个区域:y=1和y=0(或-1)


       另外,如果将神经元的两个可能的结果当做两个类别的话,公式(1)所描述的传递函数其实就是一个线性分类器,而公式(1)就叫做感知器判别函数,有关该判别函数的求解,同样可以利用梯度下降迭代的方法,对权值进行迭代训练以修正。


0
0
查看评论

神经网络模式识别及其实现.pdf

  • 2008-06-04 21:31
  • 6.24MB
  • 下载

模式识别(Pattern Recognition)学习笔记(二十一)--再谈(人工)神经网络(ANN)

1.简介        目前为止,通过MLP和BP算法的学习,我们已经接触了神经网络,并且知道了最具有代表性的一种模型“多层感知器”,这篇文章对ANN做个详细的总结和概述。        一般来讲,ANN可以看做是由...
  • eternity1118_
  • eternity1118_
  • 2016-06-12 17:11
  • 3617

一个神经网络模式识别的例子------螃蟹识别

本文来自神经网络之家 www.nnetinfo.com 作者:梁小h   日期:2015-09-22 11:11:33.0 模式识别主要解决分类问题,由于分类问题的输出是离散的,而曲线拟合的输出是连续的,因此分类问题的解决方案会与曲线拟合问题的解决方案存在一...
  • dbat2015
  • dbat2015
  • 2015-10-21 09:38
  • 4406

模式识别(Pattern Recognition)学习笔记(二十一)--再谈(人工)神经网络(ANN)

转载出处:http://blog.csdn.net/eternity1118_。 1.简介        目前为止,通过MLP和BP算法的学习,我们已经接触了神经网络,并且知道了最具有代表性的一种模型“多层感知器”,这篇文章对ANN做个详细...
  • yangleo1987
  • yangleo1987
  • 2016-11-22 18:15
  • 1215

模式识别:三层BP神经网络的设计与实现

本文的目的是学习和掌握BP神经网络的原理及其学习算法。在MATLAB平台上编程构造一个3-3-1型的singmoid人工神经网络,并使用随机反向传播算法和成批反向传播算法来训练这个网络,这里设置不同的初始权值,研究算法的学习曲线和训练误差。
  • liyuefeilong
  • liyuefeilong
  • 2015-05-29 01:49
  • 16125

从感知机到人工神经网络

感知机算法感知机(Perceptron)算法是一种很好的二分类在线算法,它要求是线性可分的模型,感知机对应于在输入的空间中将实例划分成正负样本,分离它们的是分离超平面,即判别的模型。如下图所示:可用一个决策边界w*x+b将正负样本进行区分。其中w为权重,b为偏置项。(w*x1+b)>0被分为正...
  • taoyanqi8932
  • taoyanqi8932
  • 2016-12-31 17:42
  • 6181

人工神经网络(二)单层感知器

本篇文章,我们开始介绍最简单的神经网络结构,感知器,在了解原理的基础上,下篇博客我们代码实现一个单层感知器: 感知器: 人工神经网络的第一个里程碑是感知机perceptron, 这个名字其实有点误导, 因为它根本上是做决策的。 一个感知机其实是对神经元最基本概念的模拟 ,都未必有多少网络...
  • qq_24708791
  • qq_24708791
  • 2017-10-28 00:28
  • 355

感知器算法与神经网络

感知器作为人工神经网络中最基本的单元,有多个输入和一个输出组成。虽然我们的目的是学习很多神经单元互连的网络,但是我们还是需要先对单个的神经单元进行研究。 感知器算法的主要流程:   首先得到n个输入,再将每个输入值加权,然后判断感知器输入的加权和最否达到某一阀值v,若达到,则通过sign函数输出...
  • fabulousli
  • fabulousli
  • 2016-10-21 15:54
  • 1758

BP神经网络和感知器有什么区别?

BP神经网络和感知器有什么区别? 推荐于2016-11-15 01:48:08 1、BP神经网络,指的是用了“BP算法”进行训练的“多层感知器模型”。    2、感知器(MLP,Multilayer Perceptron)是一种前馈人工神经网络模型,其将输入的多个数据集映射到单一的输...
  • kebu12345678
  • kebu12345678
  • 2017-02-04 20:45
  • 571

第四讲 感知器(Perceptron)

网易  博客  LOFTCam-用心创造滤镜 LOFTER-最美图片社交APP     消息(2)   个人中心  写日志 使用此风格  加关注 ...
  • whatry
  • whatry
  • 2015-08-17 15:49
  • 1229
    个人资料
    • 访问:292215次
    • 积分:4346
    • 等级:
    • 排名:第8245名
    • 原创:131篇
    • 转载:22篇
    • 译文:3篇
    • 评论:121条
    博客专栏
    git博客
    https://zhleternity.github.io/
    最新评论