[LeetCode 39&40] Combination Sum I & II

本文深入探讨了组合总和问题的两种变体:组合总和与组合总和 II,提供了详细的算法解析及实现代码。通过实例展示了如何使用回溯法解决这些问题,并对代码的时间复杂度和空间复杂度进行了分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:combination-sum


import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;

/**
 * 
		Given a set of candidate numbers (C) and a target number (T), 
		find all unique combinations in C where the candidate numbers sums to T.
		
		The same repeated number may be chosen from C unlimited number of times.
		
		Note:
		All numbers (including target) will be positive integers.
		Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1 ≤ a2 ≤ … ≤ ak).
		The solution set must not contain duplicate combinations.
		For example, given candidate set 2,3,6,7 and target 7, 
		A solution set is: 
		[7] 
		[2, 2, 3] 
 *
 */

public class CombinationSum {	
	
//	168 / 168 test cases passed.
//	Status: Accepted
//	Runtime: 274 ms
//	Submitted: 7 minutes ago

	
	//时间复杂度O(n!) 空间复杂度O(n)
	public List<List<Integer>> sums = new ArrayList<List<Integer>>();
    public List<List<Integer>> combinationSum(int[] candidates, int target) {
    	Arrays.sort(candidates);
    	combinationSum(candidates, 0, new ArrayList<Integer>(), target);
    	return sums;
    }
    public void combinationSum(int[] candidates, Integer begin, List<Integer> sum, int target) {
    	if(target == 0) {
			sums.add(sum);
    		return;
    	}    	
		for (int i = begin; i < candidates.length && target >= candidates[i]; i++) {
			List<Integer> list = new ArrayList<Integer>(sum);
			list.add(candidates[i]);
			combinationSum(candidates, i, list, target - candidates[i]);
		}
    }
    
	public static void main(String[] args) {
//		System.out.println(combinationSum(new int[]{2, 3, 6, 7}, 7));
	}

}


题目链接:combination-sum-ii


import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;

/**
 * 
		Given a collection of candidate numbers (C) and a target number (T),
		 find all unique combinations in C where the candidate numbers sums to T.
		
		Each number in C may only be used once in the combination.
		
		Note:
		All numbers (including target) will be positive integers.
		Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1 ≤ a2 ≤ … ≤ ak).
		The solution set must not contain duplicate combinations.
		For example, given candidate set 10,1,2,7,6,1,5 and target 8, 
		A solution set is: 
		[1, 7] 
		[1, 2, 5] 
		[2, 6] 
		[1, 1, 6] 
 *
 */

public class CombinationSumII {
	
//	172 / 172 test cases passed.
//	Status: Accepted
//	Runtime: 270 ms
//	Submitted: 0 minutes ago
	
	//时间复杂度O(n!) 空间复杂度O(n)
	public List<List<Integer>> sums = new ArrayList<List<Integer>>();
	public List<List<Integer>> combinationSum2(int[] candidates, int target) {
		Arrays.sort(candidates);
		combinationSum2(candidates, 0, new ArrayList<Integer>(), target);
		return sums;
	}

	public void combinationSum2(int[] candidates, int begin, List<Integer> sum,
			int target) {
		if (target == 0) {
			sums.add(sum);
			return;
		}
		int pre = -1;
		for (int i = begin; i < candidates.length && candidates[i] <= target; i++) {
			//如果当前数和前一个数相同, 则此次循环直接跳过
			if(pre == candidates[i]) {
				continue;
			}
			List<Integer> list = new ArrayList<Integer>(sum);
			pre = candidates[i];
			list.add(candidates[i]);
			combinationSum2(candidates, i + 1, list, target - candidates[i]);
		}
	}
	public static void main(String[] args) {

	}

}




### LeetCode Problem 40 的 C++ 实现 LeetCode40 题名为 **Combination Sum II**,其目标是从给定候选数组 `candidates` 中找出所有不同的组合,使得这些数的和等于目标值 `target`。需要注意的是,每个数字只能使用一次,并且解集中不能包含重复的组合。 以下是该问题的一个标准回溯法 (Backtracking) 解决方案: ```cpp class Solution { public: vector&lt;vector&lt;int&gt;&gt; combinationSum2(vector&lt;int&gt;&amp; candidates, int target) { sort(candidates.begin(), candidates.end()); // 排序以便去重 vector&lt;vector&lt;int&gt;&gt; result; vector&lt;int&gt; path; backtrack(result, path, candidates, target, 0); return result; } private: void backtrack(vector&lt;vector&lt;int&gt;&gt;&amp; result, vector&lt;int&gt;&amp; path, vector&lt;int&gt;&amp; candidates, int remain, int start) { if (remain &lt; 0) return; // 超过目标值则返回 if (remain == 0) { // 找到符合条件的组合 result.push_back(path); return; } for (int i = start; i &lt; candidates.size(); ++i) { // 去除重复组合 if (i &gt; start &amp;&amp; candidates[i] == candidates[i - 1]) continue; path.push_back(candidates[i]); // 选择当前元素 backtrack(result, path, candidates, remain - candidates[i], i + 1); // 进入下一层决策树 path.pop_back(); // 撤销选择 } } }; ``` #### 复杂度分析 上述算法的时间复杂度主要取决于递归调用次数以及每次递归中的操作数量。由于需要遍历所有的可能组合并对其进行剪枝处理,因此时间复杂度难以精确计算,但通常可以表示为 \(O(2^n)\),其中 \(n\) 是输入数组的长度[^1]。空间复杂度由递归栈决定,最坏情况下为 \(O(n)\)[^2]。 --- ### 动态规划方法的可能性探讨 虽然动态规划常用于解决子集求和类问题,但在本题中并不适用,因为题目要求输出具体的组合而非仅仅判断是否存在满足条件的集合。因此,采用回溯法更为合适[^3]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值