关闭

电梯调度算法

标签: 算法
1156人阅读 评论(0) 收藏 举报
分类:
  • 一栋楼有6层,现在设计一种电梯调度算法:电梯在一楼让大家上电梯,然后根据大家选择要到的楼层算出某一楼层i,电梯在i层停下让所有人下电梯,然后大家爬楼梯达到自己的楼层。请问电梯停在哪一层,可以使得这一次的所有乘客爬楼层之和最短?
  • dp算法:假设停在i层,有N1个人在i层之下,N2个人在i层,N3个人在i层之上,若电梯停在i + 1层,则爬楼层总和需要增加 N1 + N2 - N3层,若N1 + N2 - N3小于0,则i + 1层爬楼总和更小。所以按照这个思路,时间复杂度为O(N)。
    动态规划法只需要一次不满足N1 + N2 - N3<0就可以退出的原因是:假设再上一层,则N1’=N1+N2,N2’=nperson[i+1],N3’=N3-nperson[i+1]。则N1’+N2’-N3’=N1 + N2 - N3+2*nperson[i+1]>=N1 + N2 - N3,以此类推…..因此越上则需要走的层数越多。
#include <vector>
using namespace std;
//for return
struct Floor{
    int targetFloor;
    int nMinFloor;
    Floor(int _targetFloor, int _nMinFloor) :
        targetFloor(_targetFloor), nMinFloor(_nMinFloor){}
};

//传入参数如果有5层的话,那么数组的大小是6,注意
Floor getFloor(vector<int> nPerson)
{
    int targetFloor = 1;
    int totalFloor = 0;
    int n1, n2 = nPerson[1], n3 = 0;
    int sz = nPerson.size();
    for (int i = 2; i < sz; ++i){
        n3 += nPerson[i];
        totalFloor += nPerson[i] * (i - 1);
    }
    int i;
    for (i = 2; i < sz; ++i){
        if (n1 + n2 < n3){
            totalFloor += (n1 + n2 - n3); //减去相应的层数
            n1 += n2;
            n2 = nPerson[i];
            n3 -= nPerson[i];
        }
        else
            break;
    }
    return Floor(i - 1, totalFloor);
}
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:33447次
    • 积分:1371
    • 等级:
    • 排名:千里之外
    • 原创:109篇
    • 转载:13篇
    • 译文:0篇
    • 评论:1条
    文章分类