/*
* 2-sat 问题
* N个集团,每个集团2个人,现在要想选出尽量多的人,
* 且每个集团只能选出一个人。如果两人有矛盾,他们不能同时被选中
* 问最多能选出多少人
*/constint MAXN = 3010;
int n, m;
int g[3010][3010], ct[3010], f[3010];
int x[3010], y[3010];
int prev[MAXN], low[MAXN], stk[MAXN], sc[MAXN];
int cnt[MAXN];
int cnt0, ptr, cnt1;
void dfs(int w)
{
int min(0);
prev[w] = cnt0++;
low[w] = prev[w];
min = low[w];
stk[ptr++] = w;
for (int i = 0; i < ct[w]; ++i)
{
int t = g[w][i];
if (prev[t] == -1)
{
dfs(t);
}
if (low[t] < min)
{
min = low[t];
}
}
if (min < low[w])
{
low[w] = min;
return ;
}
do
{
int v = stk[--ptr];
sc[v] = cnt1;
low[v] = MAXN;
} while(stk[ptr] != w);
++cnt1;
return ;
}
void Tarjan(int N)
{ // 传入N为点数,结果保存在sc数组中,同一标号的点在同一个强连通分量内,// 强连通分量数为cnt1
cnt0 = cnt1 = ptr = 0;
int i;
for (i = 0; i < N; ++i)
{
prev[i] = low[i] = -1;
}
for (i = 0; i < N; ++i)
{
if (prev[i] == -1)
{
dfs(i);
}
}
return ;
}
int solve()
{
Tarjan(n);
for (int i = 0; i < n; i++)
{
if (sc[i] == sc[f[i]])
{
return0;
}
}
return1;
}
int check(int Mid)
{
for (int i = 0; i < n; i++)
{
ct[i] = 0;
}
for (int i = 0; i < Mid; i++)
{
g[f[x[i]]][ct[f[x[i]]]++] = y[i];
g[f[y[i]]][ct[f[y[i]]]++] = x[i];
}
return solve();
}
int main()
{
while (scanf("%d%d", &n, &m) != EOF && n + m)
{
for (int i = 0; i < n; i++)
{
int p, q;
scanf("%d%d", &p, &q);
f[p] = q, f[q] = p;
}
for (int i = 0; i < m; i++)
{
scanf("%d%d", &x[i], &y[i]);
}
n *= 2;
int Min = 0, Max = m + 1;
while (Min + 1 < Max)
{
int Mid = (Min + Max) / 2;
if (check(Mid))
{
Min = Mid;
}
else
{
Max = Mid;
}
}
printf("%d\n", Min);
}
return0;
}