树状数组

ACM模版

一维

/*
 *  INIT: ar[]置为0;
 *  CALL: add(i, v): 将i点的值加v; sum(i): 求[1, i]的和;
 */
#define typev int   //  type of res

const int N = 1010;

typev ar[N];        //  index: 1 ~ N

int lowb(int t)
{
    return t & (-t);
}

void add(int i, typev v)
{
    for (; i < N; ar[i] += v, i += lowb(i));
    return ;
}

typev sum(int i)
{
    typev s = 0;
    for (; i > 0; s += ar[i], i -= lowb(i));
    return s;
}

二维

/*
 *  INIT: c[][]置为0; Row,Col要赋初值 
 */
const int N = 10000;

int c[N][N];
int Row, Col;

inline int Lowbit(const int &x)
{   //  x > 0
    return x & (-x);
}

int Sum(int i, int j)
{
    int tempj, sum = 0;
    while (i > 0)
    {
        tempj = j;
        while (tempj > 0)
        {
            sum += c[i][tempj];
            tempj -= Lowbit(tempj);
        }
        i -= Lowbit(i);
    }
    return sum;
}

void Update(int i, int j, int num)
{
    int tempj;
    while (i <= Row)
    {
        tempj = j;
        while (tempj <= Col)
        {
            c[i][tempj] += num;
            tempj += Lowbit(tempj);
        }
        i += Lowbit(i);
    }
    return ;
}
“华为杯”第十八届中国研究生数学建模竞赛是一项全国性赛事,致力于提升研究生的数学建模与创新实践能力。数学建模是将实际问题转化为数学模型,并运用数学方法求解以解决实际问题的科学方法。该竞赛为参赛者提供了展示学术水平和团队协作精神的平台。 论文模板通常包含以下内容:封面需涵盖比赛名称、学校参赛队号、队员姓名以及“华为杯”和中国研究生创新实践系列大赛的标志;摘要部分应简洁明了地概括研究工作,包括研究问题、方法、主要结果和结论,使读者无需阅读全文即可了解核心内容;目录则列出各章节标题,便于读者快速查找;问题重述部分需详细重新阐述比赛中的实际问题,涵盖背景、原因及重要性;问题分析部分要深入探讨每个问题的内在联系与解决思路,分析各个子问题的特点、难点及可能的解决方案;模型假设与符号说明部分需列出合理假设以简化问题,并清晰定义模型中的变量和符号;模型建立与求解部分是核心,详细阐述将实际问题转化为数学模型的过程,以及采用的数学工具和求解步骤;结果验证与讨论部分展示模型求解结果,评估模型的有效性和局限性,并对结果进行解释;结论部分总结研究工作,强调模型的意义和对未来研究的建议;参考文献部分列出引用文献,遵循规范格式。 在准备竞赛论文时,参赛者需注重逻辑清晰、论述严谨,确保模型科学实用。良好的团队协作和时间管理也是成功的关键。通过竞赛,研究生们不仅锻炼了数学应用能力,还提升了团队合作、问题解决和科研写作能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值