POJ-2084(Catalan数专题)(Game of Connections )

原创 2012年03月21日 15:02:31

首先给出Catalan数的计算公式Catalan=C(2*n,n)/(n + 1)。

【解题思路】这道题目是典型的凸多边形划分问题,直接套用公式即可。

SOJ-2114(栈):典型的出栈顺序问题。

SOJ-2404(The midterm exam of algorithm):典型的二叉树个数问题。

SOJ-1247(球迷购票问题):

【题目描述】

球赛门票的售票处规定每位购票者限购一张门票,且每张门票售价50元。购票者中有m位手持50元钱币,另有n人手持100元。假设售票处开始售票时无零钱。问这m+n人有几种排队方式可使售票处不致出现找不出钱的局面。

对给定的m,n(0<=m,n<=5000),计算出排队方式总数。输入数据第1行为测试数据的个数t,余下的t行每行有两个整数m和n。对每一组测试数据输出方案数。  

【解题思路】

当m<n显然无解;

对于m=n的情况就直接可以套用公式;

对于m>n的情况:

称由n-1个50元的和m+1个100元的构成的序列为sigma序列。

对于每种不合法的方式必然存在一种前缀使50元人数大于100元人数1个人,这样的方式有C(m+n,n-1),这种关系是对应的。
ans=C(m+n,n)-c(m+n,n-1)

具体解法参考《编程之美---买票找零》274-275页的分析。

运用了大数模版:

int main()
{
    int m, n;
    int t;
    scanf("%d", &t);
    while(t--) {
        scanf("%d%d", &m, &n);
        if (n > m) {
            printf("0\n");
        } else if (n == 0) {
            printf("1\n");
        } else if (n == m) {
            bignum ans = ans.C(2 * n, n) / (n + 1);
            cout<<ans<<endl;
        } else {
            bignum ans1 = ans1.C(m + n, n);
            bignum ans2 = ans2.C(m + n, n - 1);
            cout<<(ans1 - ans2)<<endl;
        }
    }
    return 0;
}


卡特兰数

百科名片

卡特兰数又称卡塔兰数,是组合数学中一个常出现在各种计数问题中出现的数列。由以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)命名。

卡特兰数

前几项为 : 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020, 91482563640, 343059613650, 1289904147324, 4861946401452, ...

原理

令h(1)=1,h(2)=1,catalan数满足递归式:

  例如:h(3)=h(1)*h(2)+h(2)*h(1)=1*1+1*1=2
  h(4)=h(1)*h(3)+h(2)*h(2)+h(3)*h(1)=1*2+1*1+2*1=5
  另类递归式:
  h(n)=h(n-1)*(4*n-2)/(n+1);
  该递推关系的解为:
  h(n)=C(2n,n)/(n+1) (n=1,2,3,...)

卡特兰数的应用

  实质上都是递归等式的应用

括号化

  矩阵链乘: P=a1×a2×a3×……×an,依据乘法结合律,不改变其顺序,只用括号表示成对的乘积,试问有几种括号化的方案?(h(n)种)

出栈次序

  一个栈(无穷大)的进栈序列为1,2,3,…,n,有多少个不同的出栈序列?
  分析
  对于每一个数来说,必须进栈一次、出栈一次。我们把进栈设为状态‘1’,出栈设为状态‘0’。n个数的所有状态对应n个1和n个0组成的2n位二进制数。由于等待入栈的操作数按照1‥n的顺序排列、入栈的操作数b大于等于出栈的操作数a(a≤b),因此输出序列的总数目=由左而右扫描由n个1和n个0组成的2n位二进制数,1的累计数不小于0的累计数的方案种数。
  在2n位二进制数中填入n个1的方案数为c(2n,n),不填1的其余n位自动填0。从中减去不符合要求(由左而右扫描,0的累计数大于1的累计数)的方案数即为所求。
  不符合要求的数的特征是由左而右扫描时,必然在某一奇数位2m+1位上首先出现m+1个0的累计数和m个1的累计数,此后的2(n-m)-1位上有n-m个 1和n-m-1个0。如若把后面这2(n-m)-1位上的0和1互换,使之成为n-m个0和n-m-1个1,结果得1个由n+1个0和n-1个1组成的2n位数,即一个不合要求的数对应于一个由n+1个0和n-1个1组成的排列。
  反过来,任何一个由n+1个0和n-1个1组成的2n位二进制数,由于0的个数多2个,2n为偶数,故必在某一个奇数位上出现0的累计数超过1的累计数。同样在后面部分0和1互换,使之成为由n个0和n个1组成的2n位数,即n+1个0和n-1个1组成的2n位数必对应一个不符合要求的数。
  因而不合要求的2n位数与n+1个0,n-1个1组成的排列一一对应。
  显然,不符合要求的方案数为c(2n,n+1)。由此得出 输出序列的总数目=c(2n,n)-c(2n,n+1)=1/(n+1)*c(2n,n)。
  (这个公式的下标是从h(0)=1开始的)
  类似问题
  有2n个人排成一行进入剧场。入场费5元。其中只有n个人有一张5元钞票,另外n人只有10元钞票,剧院无其它钞票,问有多少中方法使得只要有10元的人买票,售票处就有5元的钞票找零?(将持5元者到达视作将5元入栈,持10元者到达视作使栈中某5元出栈)

凸多边形三角剖分

  求将一个凸多边形区域分成三角形区域的方法数。
  类似:一位大城市的律师在她住所以北n个街区和以东n个街区处工作。每天她走2n个街区去上班。如果她从不穿越(但可以碰到)从家到办公室的对角线,那么有多少条可能的道路?
  类似:在圆上选择2n个点,将这些点成对连接起来使得所得到的n条线段不相交的方法数?

给定节点组成二叉树

  给定N个节点,能构成多少种不同的二叉树
  (能构成h(N)个)
  (这个公式的下标是从h(0)=1开始的)

Catalan 数计算及应用

一、catalan数由来和性质 1)由来     catalan数(卡塔兰数)取自组合数学中一个常在各种计数问题中出现的数列。以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)命名。 ...
  • chlele0105
  • chlele0105
  • 2014年08月21日 22:50
  • 1341

Catalan(卡特兰)数及定理的简要证明------附上简要代码

Catalan数很重要, 学计算机的, 没有不知道这个的, 我这个非计算机专业的学生, 也来凑凑热闹:           卡特兰数和上述定理的应用非常普遍, 也是很多IT公司笔试...
  • stpeace
  • stpeace
  • 2015年05月23日 23:12
  • 3314

【专题】Catalan数

转载:http://blog.csdn.net/hardbrave/article/details/6713915     什么是Catalan数     说到Catalan数,就不得不提...
  • fdcumt
  • fdcumt
  • 2013年08月25日 21:52
  • 511

程序员数学--卡特兰数(Catalan number)

10个高矮不同的人,排成两排,每排必须是从矮到高排列,而且第二排比对应的第一排的人高,问有多少种排列方式? 我们可以先把这10个人从低到高排列,然后,选择5个人排在第一排,那么剩下的5个人肯定是在第...
  • u011080472
  • u011080472
  • 2016年04月15日 16:35
  • 1743

n对括号的匹配方式以及Catalan数通项公式的推导

4对括号有多少种可能的合法匹配方式?n对括号呢? 此题是卡特兰数的一个通常应用,相似的还有出栈顺序等。关于卡特兰数的具体内容,请参阅百度百科或Wiki. http://baike.ba...
  • youwuwei2012
  • youwuwei2012
  • 2014年08月28日 21:40
  • 1293

卡特兰数(Catalan)及其应用

卡特兰数 卡特兰数是组合数学中一个常出现在各种计数问题中出现的数列。 卡特兰数前几项为 : C0=1,C1=1,C2=2,C3=5,C4=14,C5=42,C6=132,C7=429,C8=143...
  • doc_sgl
  • doc_sgl
  • 2013年05月03日 16:54
  • 1986

Catalan数计算及应用

转自http://blog.csdn.net/wuzhekai1985   问题描述:卡塔兰数,是组合数学中一个常出现在各种计数问题中出现的数列。输入一个整数n,计算h(n)。其递归式如下:h(n)...
  • kkForWork
  • kkForWork
  • 2015年06月18日 15:28
  • 374

Catalan数(一)

(一)Catalan数的介绍
  • Netown_Ethereal
  • Netown_Ethereal
  • 2014年04月04日 14:49
  • 722

程序员必知(五):卡特兰数

卡特兰数,一种有着特殊规律的数列,先用一道题来引出卡特兰数。 10个高矮不同的人,排成两排,每排必须是从矮到高排列,而且第二排比对应的第一排的人高,问有多少种排列方式? 我们可以先把这10个人从低到...
  • hongchangfirst
  • hongchangfirst
  • 2013年12月13日 20:33
  • 9073

Game of Connections -组合数学中的计数问题

问题描述: 输入样例: 2 3 -1 输出样例: 2 5 问题分析:刚开始不知道是卡特兰数,然后画图推了一下:从点1开始顺时针排一个圆,先把顶点为4个的方案画出来,然后画6个的,就会发现如果将点...
  • HengTian_real
  • HengTian_real
  • 2017年08月25日 09:17
  • 98
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:POJ-2084(Catalan数专题)(Game of Connections )
举报原因:
原因补充:

(最多只允许输入30个字)