关闭

【编程之美】桶中取黑白球+SOJ-3261

692人阅读 评论(0) 收藏 举报

SOJ-3261只是把黑球和白球交换,对于SOJ来说,结果只和黑球数量有关,而下面的只和白球数量有关。

【题目描述】

有一个桶,里面有白球、黑球各100个,人们必须按照以下的规则把球取出来:
1、每次从桶里面拿出来两个球;
2、如果是两个同色的球,就再放入一个黑球;
3、如果是两个异色的球,就再放入一个白球;
问:最后桶里面只剩下一个黑球的概率是多少?

【解题思路】

思路1:找规律
 使用(黑球个数, 白球个数)来表示桶中黑球和白球的个数变动,正数表示增加,负数表示减少,根据规则找规律:
1、如果每次从桶里面拿出两个白球,则应放入一个黑球:(0, -2) + (1, 0) = (1, -2);
2、如果每次从桶里面拿出两个黑球,则应放入一个黑球:(-2, 0) + (1, 0) = (-1, 0);
3、如果每次从桶里面拿出一个白球和一个黑球,则应放入一个白球:(-1, -1) + (0, 1) = (-1, 0);
从以上各种情况可以看出以下规律:
1)每次都会减少一个球,那么最后的结果肯定是桶内只剩一个球,要么是白球,要么是黑球;
2)每次拿球后,白球的数目要么不变,要么两个两个地减少;
 所以,从上面的分析可以得知,最后不可能只剩下一个白球,那么必然就只能是黑球了。
思路2:使用数学方法
    根据取球规则联想到数学中异或(XOR):
1、两个相同的数,异或等于0;
2、两个不同的数,异或等于1;
将黑球看作0,白球看作1,那么对于每次的操作可以做这样的想象:每次捞起两个数字做一次异或操作,并将所得的结果再次丢回桶中,因此最后的结果实际上相当于把所有的球都进行一次异或运算,最后所得的结果即为最后剩余的球。
    异或运算规律:
1)偶数个1异或,结果为0;
2)偶数个0异或,结果为0;
3)奇数个1异或,结果为1;
4)奇数个0异或,结果为0:
对于复杂问题的分析,最有效的方法就是通过简单的例子进行归纳,然后根据实际归纳出的结论进行结果分析,而适当的数学抽象在解决问题的过程中往往有画龙点睛的作用。

总结:黑球个数为a,白球为b,不管多少个0异或都等于0,不影响,只看b是奇数还是偶数,如果是奇数,结果为1(黑球),如果是偶数,结果为0

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:292405次
    • 积分:4109
    • 等级:
    • 排名:第7504名
    • 原创:200篇
    • 转载:11篇
    • 译文:0篇
    • 评论:52条
    最新评论