Symmetric Tree
Given a binary tree, check whether it is a mirror of itself (ie, symmetric around its center).
For example, this binary tree is symmetric:
1 / \ 2 2 / \ / \ 3 4 4 3
But the following is not:
1 / \ 2 2 \ \ 3 3
递归解法:由于对称性,每次把一个节点的左子树和它兄弟节点的左子树进行比较,然后递归处理即可。
struct TreeNode {
int val;
TreeNode *left;
TreeNode *right;
TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};
class Solution {
public:
bool isSymmetricRecursive(TreeNode* root1,TreeNode* root2)
{
if(root1 == NULL && root2 == NULL)return true;
if(root1 == NULL || root2 == NULL)return false;
return (root1->val == root2->val) && isSymmetricRecursive(root1->left,root2->right) && isSymmetricRecursive(root1->right,root2->left);
}
bool isSymmetric(TreeNode *root) {
if(root == NULL)return true;
return isSymmetricRecursive(root->left,root->right);
}
};
迭代方法:思路和递归一样,此处使用两个队列进行处理,把左子树的孩子放入第一个队列,右子树的放入第二个队列,每次取队首元素进行判断,速度比递归快了几倍
struct TreeNode {
int val;
TreeNode *left;
TreeNode *right;
TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};
class Solution {
public:
bool isSymmetric(TreeNode *root) {//判断镜像树和生成镜像树不同
if(!root || !root->left && !root->right)return true;
queue<TreeNode*> leftQueue,rightQueue;
leftQueue.push(root->left);
rightQueue.push(root->right);
while(leftQueue.size() > 0 && rightQueue.size() > 0)
{
TreeNode* pNode1 = leftQueue.front();
leftQueue.pop();
TreeNode* pNode2 = rightQueue.front();
rightQueue.pop();
if(!pNode1 && !pNode2)continue;//都为空
if(!pNode1 || !pNode2)return false;//只有一个为空
if(pNode1->val != pNode2->val)return false;//都不为空
leftQueue.push(pNode1->left),leftQueue.push(pNode1->right);//第一个队列先进左子树
rightQueue.push(pNode2->right),rightQueue.push(pNode2->left);//第二个队列先进右子树
}
if(leftQueue.size() > 0 || rightQueue.size() > 0)return false;
return true;
}
};
题目:输入一颗二元查找树,将该树转换为它的镜像,即在转换后的二元查找树中,左子树的结点都大于右子树的结点。用递归和循环两种方法完成树的镜像转换。
分析:这里是转换为镜像树,思路和上面的判断类似,每次分别处理左右子树,可以使用递归,也可以使用迭代。此处和判断不同的地方在于,判断必须定位到每个节点的镜像节点的位置,而转换由于不需要一步转换完成,所以每个节点之需要和相邻节点进行交换,相对还比较简单一点。对于迭代,可以使用队列,也可以使用堆栈,具体代码如下:
struct TreeNode {
int val;
TreeNode *left;
TreeNode *right;
TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};
void SymmetricTreeRecursive(TreeNode* root)//递归,注意和上面判断镜像树的区别
{
if(!root)return;
TreeNode* tmp = root -> left;
root -> left = root->right;
root->right = tmp;
SymmetricTreeRecursive(root->left);
SymmetricTreeRecursive(root->right);
}
void SymmetricTreeIterative(TreeNode* root)//迭代
{
if(!root)return;
stack<TreeNode*> s;
s.push(root);
while(!s.empty())
{
TreeNode* pCur = s.top();
s.pop();
TreeNode* tmp = pCur->left;
pCur->left = pCur->right;
pCur->right = tmp;
if(pCur->left)s.push(pCur->left);
if(pCur->right)s.push(pCur->right);
}
}
Same Tree
Given two binary trees, write a function to check if they are equal or not.
Two binary trees are considered equal if they are structurally identical and the nodes have the same value.
递归解法
struct TreeNode {
int val;
TreeNode *left;
TreeNode *right;
TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};
class Solution {
public:
bool isSameTree(TreeNode *p, TreeNode *q) {
if(p == NULL && q == NULL)return true;
if(p == NULL || q == NULL)return false;
if(p->val == q->val)return isSameTree(p->left,q->left) && isSameTree(p->right,q->right);
else return false;
}
};
迭代解法(和上面类似),比递归算法高了7倍
struct TreeNode {
int val;
TreeNode *left;
TreeNode *right;
TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};
class Solution {
public:
bool isSameTree(TreeNode *p, TreeNode *q) {
if(!p && !q)return true;
if(!p || !q)return false;
queue<TreeNode*> queue1,queue2;
queue1.push(p),queue2.push(q);
while(queue1.size()>0 && queue2.size()>0)
{
TreeNode* pNode1 = queue1.front(),*pNode2 = queue2.front();
queue1.pop(),queue2.pop();
if(!pNode1 && !pNode2)continue;
if(!pNode1 || !pNode2)return false;
if(pNode1->val != pNode2->val)return false;
queue1.push(pNode1->left),queue1.push(pNode1->right);
queue2.push(pNode2->left),queue2.push(pNode2->right);//由于是判断相同树,所以进队顺序相同
}
if(queue1.size()>0 || queue2.size()>0)return false;
return true;
}
};