Validate Binary Search Tree
Given a binary tree, determine if it is a valid binary search tree (BST).
Assume a BST is defined as follows:
- The left subtree of a node contains only nodes with keys less than the node's key.
- The right subtree of a node contains only nodes with keys greater than the node's key.
- Both the left and right subtrees must also be binary search trees.
confused what "{1,#,2,3}"
means? > read more on how binary tree is serialized on OJ.
class Solution {
public:
bool isValidBST(TreeNode* root,TreeNode*& pre) {
if(!root)return true;
bool flag = isValidBST(root->left,pre);
if(!flag)return false;
if(pre && pre->val >= root->val)return false;
pre = root;
return isValidBST(root->right,pre);
}
bool isValidBST(TreeNode* root)
{
TreeNode* pre = NULL;
return isValidBST(root,pre);
}
};
方法二:根据二叉查找树的定义,每一节点都在左右子树值的中间,因此,每次递归遍历时,给定一个值的范围,该范围是当前子树值的两个边界,用该范围来判断合法性,该方法的效率比方法一高
struct TreeNode {
int val;
TreeNode *left;
TreeNode *right;
TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};
class Solution {
public:
bool isValidBST(TreeNode* root,int minValue,int maxValue)//左右子树的范围
{
if(!root)return true;
if(minValue < root->val && root -> val < maxValue)
{
return isValidBST(root->left,minValue,root->val) && isValidBST(root->right,root->val,maxValue);
}
return false;
}
bool isValidBST(TreeNode* root)
{
return isValidBST(root,INT_MIN,INT_MAX);
}
};