python 爬虫 beautifulsoup example 例子

今天第一次用python的beautifulsoup,虽然比较生疏,但还是爬下来了。

爬的网站是: 网站排行

爬取的内容:包括网站的url, aleax排名,百度权重, PR等

import urllib2
import pandas as pd
from bs4 import BeautifulSoup

def urlprocess(url):
    u = url.replace('/Html/site_','').replace('.html','').replace('/site_www.','www.')
    return u

def baiduprs(baidu):
    return baidu.replace('/themes/default/images/baidu/','').replace('.gif','')

def PRprs(pr):
    return pr.replace('/themes/default/images/ranks/Rank_','').replace('.gif','')

url = 'http://top.chinaz.com/all/index_alexa.html'
res = pd.DataFrame(columns=['host','alex','baidu','pr','Inverse chain number','score','rank'])
for j in range(2,1157):
    print 'j:',j
    html = urllib2.urlopen(url).read()
    url = 'http://top.chinaz.com/all/index_alexa_' + str(j) + '.html'
    soup2 = BeautifulSoup(html)
    temp = soup2.findAll('ul', attrs = {'class':'listCentent'})[0]
    l = len(temp.contents)
    c = temp.contents
    for i in range(1,l-1):
        x = c[i]
        m = {#'introduction':[x.div.next_sibling.div.next_sibling.string],
        'host':[urlprocess(x.div.a.attrs['href']) ],
        'alex':[x.div.next_sibling.div.p.a.string ],
        'baidu':[baiduprs(x.div.next_sibling.div.p.next_sibling.next_sibling.a.img.attrs['src'])],
        'pr':[PRprs(x.div.next_sibling.div.p.next_sibling.next_sibling.next_sibling.next_sibling.img.attrs['src'])],
        'Inverse chain number':[x.div.next_sibling.div.p.next_sibling.next_sibling.next_sibling.next_sibling.\
                next_sibling.next_sibling.a.string],
        'rank':[x.div.next_sibling.next_sibling.div.strong.string],
        'score':[x.div.next_sibling.next_sibling.div.span.string[3:]]}
        res = res.append(pd.DataFrame(m))
res.to_csv('D://host_rank.csv')


结果如下:



BeautifulSoup是一个非常实用的网页解析库,可以方便地从网页中提取数据。下面是一个使用BeautifulSoup进行爬虫的案例: ```python import requests from bs4 import BeautifulSoup # 发送请求获取网页内容 url = "https://www.example.com" # 替换成你要爬取的网页的URL response = requests.get(url) html = response.text # 使用BeautifulSoup解析网页内容 soup = BeautifulSoup(html, "html.parser") # 提取需要的数据 data = soup.find("div", class_="content").text # 替换成你要提取的具体数据的标签和属性 # 打印提取的数据 print(data) ``` 在这个案例中,我们首先使用requests库发送请求获取网页内容,然后使用BeautifulSoup解析网页内容。通过调用find方法,我们可以根据标签和属性来定位需要提取的数据。最后,我们将提取的数据打印出来。 请注意,这只是一个简单的示例,实际应用中可能需要根据具体的网页结构和需求进行相应的调整。 #### 引用[.reference_title] - *1* [Python_BeautifulSoup4爬虫应用案例](https://blog.csdn.net/weixin_45498948/article/details/127177906)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [网络爬虫BeautifulSoup详解(含多个案例)](https://blog.csdn.net/Dream_Gao1989/article/details/124163664)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值