HotSpot关联规则算法(1)-- 挖掘离散型数据

本文介绍了HotSpot关联规则算法在挖掘离散型数据中的应用,通过分析weka中的实现,探讨了算法参数如最小支持度、最大分指数等,并提供了数据处理和算法伪代码的解析,分享了作者对算法的理解和个人见解。
摘要由CSDN通过智能技术生成

      提到关联规则算法,一般会想到Apriori或者FP,一般很少有想到HotSpot的,这个算法不知道是应用少还是我查资料的手段太low了,在网上只找到很少的内容,这篇http://wiki.pentaho.com/display/DATAMINING/HotSpot+Segmentation-Profiling ,大概分析了一点,其他好像就没怎么看到了。比较好用的算法类软件,如weka,其里面已经包含了这个算法,在Associate--> HotSpot里面即可看到,运行算法界面一般如下:

其中,红色方框里面为设置的参数,如下:

-c last ,表示目标所在的目标所在的列,last表示最后一列,也是是数值,表示第几列;

-V first, 表示目标列的某个状态值下标值(这里可以看出目标列应该是离散型),first表示第0个,可以是数值型;

-S 0.13,最小支持度,里面会乘以样本总数得到一个数值型的支持度;

-M 2 , 最大分指数;

-I 0.01 , 在weka里面解释为Minimum improvement in target value,不知道是否传统的置信度一样;


相关说明:本篇相关代码参考weka里面的HotSpot算法的具体实现,本篇只分析离散型数据,代码可以在(http://download.csdn.net/detail/fansy1990/8488971)下载。

1. 数据:

@attribute age 			{young, pre-presbyopic, presbyopic}
@attribute spectacle-prescrip	{myope, hypermetrope}
@attribute astigmatism		{no, yes}
@attribute tear-prod-rate	{reduced, normal}
@attribute contact-lenses	{soft, hard, none}
young,myope,no,reduced,none
young,myope,no,normal,soft
young,myope,yes,reduced,none
。。。
presbyopic,hypermetrope,yes,normal,none
这个数据格式是参考weka里面的,加入最前面的5行是因为需要把各个属性进行编码,所以提前拿到属性的各个状态,方便后续操作;
2. 单个节点定义:

public class HSNode {
	private int splitAttrIndex; // 属性的下标
	private int attrStateIndex; // 属性state的下标
	private int allCount ; // 当前数据集的个数
	private int stateCount ; // 属性的state的个数
	private double support; // 属性的支持度
	private List<HSNode> chidren;
	
	public HSNode(){}}
	

splitAttrIndex 即对应属性astigmatism的下标(应该是第2个,从0开始);attrStateIndex 则对应这个属性的下标,即no的下标(这里应该是0);allCount即12,stateCount即5,support 对应41.57%(即5/12的值);children即其孩子节点;(这里的下标即是从文件的前面几行编码得到的,比如属性age为第一个属性,编码为0,young为其第一个状态,编码为0);

3. 算法伪代码,(文字描述,太不专业了,如果要看,就将就看?)

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值