教育立志篇---一位台湾校长震动所有中国人的演讲---我现在学习还不晚

http://club.chinaren.com/45418419.html

台湾有这么一所学校,学生年龄在15-18之间,每年三千多学生中,因违反校规校纪被校方开除的二、三百人。学校没有工人,没有保卫,没有大师傅,一切必要工种都由学生自己去做。学校实行学长制,三年级学生带一年级学生。全校集合只需3分钟。学生见到老师七米外要敬礼。学生没有寒署假作业,没有一个考不上大学的。这就是台湾享誉30年以道德教育为本的忠信高级工商学校。在台湾各大报纸招聘广告上,经常出现"只招忠信毕业生”字样。

以下是校长高震东在国内的讲演:

同学们,你们说“天下兴亡”的下一句是什么?(台下声音:“匹夫有责”)──不,是“我的责任”。如果今年高考每个人都额外加10分,那不等于没加吗?“天下兴亡,匹夫有责”等于大家无责。“匹夫有责”要改成“我的责任”,我是这样教我的学生的。所以说,现在我们大陆教育办得不好,是我高震东的责任,只因为这样,我才回祖国专门举办道德方面演讲。(掌声)“以天下兴亡为已任”是孟子思想。

禹是人,舜是人,我也是人!他们能做到的,我为什么不能呢?“天下兴亡,我的责任”,唯有这个思想,我们的国家才有希望。我们每个学生如果人人都说:学校秩序不好,是我的责任;国家教育办不好,是我的责任;国家不强盛,我的责任……人人都能主动负责,天下哪有不兴盛的国家?哪有不团结的团体?所以说,每个学生都应该把责任拉到自己身上来,而不是推出去。
………… …………

 

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值