前言
当序列中元素范围比较大时,就不适合使用计数排序。针对这种情况,就有了基数排序(Radix Sort),这是一种按位排序。它仍然是以计数排序为基础。
基数排序
基数排序的基数:十进制数的基数自然是10,二进制的基数自然是2。通常有两种按位排序策略:1.高位优先法(most significant digit first,MSD):简单讲就是从高位排起。2.低位优先法(least significant digit first,LSD):它与高位优先相反,从低位排起。从排序效果上看,高位优先比较直观,但却涉及到递归的过程,故最常用的还是低位优先法。说它以计数排序为基础,理由如下,以最常见的十进制数为例:
仔细理解上图,高位优先的过程你也一定可以推测出来。下面给出低位优先下的代码。
代码
- #include<iostream>
- #include<iomanip>
- using namespace std;
- //获取最大位数
- int get_max_digit(int array[], int n)
- {
- int digit, max;
- digit = 0;
- max = array[0];
- for (int i = 1; i < n; i++)
- {
- if (array[i] > max)
- max = array[i];
- }
- while (max)
- {
- digit++;
- max /= 10;
- }
- return digit;
- }
- //基数排序
- void RadixSort(int array[], int n)
- {
- //创建临时数组
- int *temp = new int[n];
- //位数:决定了排序趟数
- int digit = get_max_digit(array, n);
- //计数数组
- int count[10];
- //排序
- int r, i, d;
- for (r = 1; r <= digit; r++)
- {
- //重置计数数组
- memset(count, 0, 10 * sizeof(int));
- //把数据存储到临时数组
- memcpy(temp, array, n*sizeof(int));
- d = i = 1;
- while (i < r)
- {
- i++;
- d *= 10;
- }
- for (i = 0; i < n; i++)
- count[(array[i] / d) % 10]++;
- for (i = 1; i < 10; i++)
- count[i] += count[i - 1];
- //数据回放
- for (i = n - 1; i >= 0; i--)
- array[--count[(temp[i] / d) % 10]] = temp[i];
- }
- }
- void print(int array[], int n)
- {
- for (int i = 0; i < n; i++)
- cout << setw(6) << array[i];
- cout << endl;
- }
- int main()
- {
- cout << "******基数排序***by David***" << endl;
- int array[] = { 123, 234, 45, 111, 6, 128 };
- int n = sizeof(array) / sizeof(int);
- cout << "原序列" << endl;
- print(array, n);
- cout << "基数排序" << endl;
- RadixSort(array, n);
- print(array, n);
- system("pause");
- return 0;
- }
运行