关闭

[置顶] Git 提交

git 提交文档:专为那些希望在 Git 上做出贡献的程序员而写。...
阅读(670) 评论(1)

[置顶] 加州理工学院公开课:机器学习与数据挖掘_Epilogue(第十八课-终结篇)

这是该课程的最后一课,作者首先总结了有关机器学习的理论、方法、模型、范式等。最后介绍了贝叶斯理论和Aggregation(聚合)方法在机器学习中的应用。...
阅读(950) 评论(0)

[置顶] 加州理工学院公开课:机器学习与数据挖掘_Three Learning Principles(第十七课)

这一节课主要讲述机器学习中应该注意的事项,包括:Occam's Razor、Sampling Bias、Data Snooping....
阅读(1122) 评论(0)

[置顶] 加州理工学院公开课:机器学习与数据挖掘_Radial Basis Function(第十六课)

课程简介 : 主要介绍了 RBF 模型及其与最近邻算法、神经网络、Kernel Method 的比较。最后介绍了 RBF 模型的 regularization 问题。...
阅读(1051) 评论(0)

[置顶] 加州理工学院公开课:机器学习与数据挖掘_Kernal Method(第十五课)

继续上一课最后的问题,当数据是非线性可分的时候需要把数据转化到 Z 空间(线性可分)才可以利用 SVM ,因此需要知道 Z 空间是什么。这节课解决了不用知道具体的 Z 空间就可以利用 SVM 进行分类。 最后,该课程介绍了如何因对过拟化的问题。思想跟十一课介绍的相同,就是设置一个限制条件。...
阅读(944) 评论(0)

[置顶] 加州理工学院公开课:机器学习与数据挖掘_SVM(第十四课)

课程简介 这节课主要讲述了支持向量机的原理及其在线性可分数据集上的应用。最后讲到支持向量机在处理高维空间时显示出的优势。。在讲述支持向量机的原理的时候用到拉格朗日方程, KKT 及二次规划进行求解。理论部分比较深。...
阅读(1121) 评论(0)

[置顶] 加州理工学院公开课:机器学习与数据挖掘_Validation(第十三课)

主要介绍如何通过验证来评估模型的性能及如何通过验证选取模型的问题。介绍的方法有:模型选择、交叉验证。...
阅读(1350) 评论(0)

[置顶] 加州理工学院公开课:机器学习与数据挖掘_Regularization(第十二课)

接上一节课,这一节课的主题是如何利用 Regularization 避免 Overfitting。通过给假设集设定一些限制条件从而避免 Overfitting,但是如果限制条件设置的不恰当就会造成 Underfitting。最后讲述了选择 Regularization 的一些启发式方法。...
阅读(1358) 评论(0)

[置顶] 加州理工学院公开课:机器学习与数据挖掘_过拟化(第十一课)

本节课主要介绍了关于机器学习中的过拟化问题。作者指出,区别一个专业级玩家和业余爱好者的方法之一就是他们如何处理过拟化问题。通过该课程,我们可以知道样本数据的拟合并不是越高越好,因为噪声的存在将使得过拟化问题的出现。最后简介了处理过拟合的两种方法。...
阅读(1059) 评论(3)

[置顶] 加州理工学院公开课:机器学习与数据挖掘_神经网络(第十课)

本节课主要介绍人工神经网络.通过介绍评定模型,随机梯度下降法,生物启发和感知器系统,讲师用视图和数学解析式详细地讲解了神经网络的运行过程以及原理....
阅读(1255) 评论(0)

[置顶] 加州理工学院公开课:机器学习与数据挖掘_线性模型 II(第九课)

课程简介: 主要内容包括对线性分类及线性回归分析的简单回顾,以及对逻辑回归分析,误差测定与算法三方面的详细讲解,同时对非线性变换的泛化方法进行了剖析....
阅读(1106) 评论(0)

[置顶] 加州理工学院公开课:机器学习与数据挖掘_偏差与方差权衡(第八课)

在回顾了VC分析之后,本节课重点介绍了另一个理解泛化的理论:偏差与方差,并通过学习曲线的运用比较了VC分析和偏偏差方差权衡的不同用途....
阅读(1232) 评论(0)

[置顶] 加州理工学院公开课:机器学习与数据挖掘_VC 维(第七课)

课程简介: 本讲通过回顾上一讲内容,引出了VC维的定义,它是由统计学习理论定义的有关函数集学习性能的一个重要指标。并通过例子证明函数集的VC维就是它能打散的最大样本数目。课程最后介绍VC维的应用,指出它反映了函数集的学习能力,VC维越大则学习机器越复杂...
阅读(1576) 评论(0)

[置顶] 加州理工学院公开课:雷蒙保罗MAPA泛化理论(第六课)

课程简介: 本次课程主题为"泛化理论",介绍了机械学习相关课程,重点介绍与之相关的公式推导及其应用。是这一整套课程中最具理论的课程,如果读者理解了该部分内容,那么对于后面课程的理解将会有很大的帮助。...
阅读(1302) 评论(1)

[置顶] 加州理工学院公开课:机器学习与数据挖掘_训练与测试(第五课)

课程简介: 本视频为机器学习系列课程第5章。主要定量研究训练与测试之间的关系,并引入学习模型中的一个重要概念--断点。课程深入浅出,从正射线、正区间和凸集三个具体例子入手,寻找突破点,从而得出训练集与测试集的关系。...
阅读(1427) 评论(0)

[置顶] 加州理工学院公开课:机器学习与数据挖掘_误差和噪声(第四课)

这一课的主题是:误差分析与噪声处理。内容如下: 1、Nonlinear Transformation(Continue)(非线性转换(续)) 2、Error Measure (误差度量)(重点) 3、Noisy Targets(噪声指标)(重点) 4、Preamble to the Theory(理论热身)...
阅读(1675) 评论(1)

[置顶] 加州理工学院公开课:机器学习与数据挖掘_线性模型(第三课)

这一课时主要是讲述了线性模型的一些处理。 包括: 1、输入数据的表示(Input Representation) 2、线性分类(Linear Classification) 3、线性回归(Linear Regression)      4、非线性模型转换(Nonlinear Transformation) 作者认为,如果要测试某个模型的可用性,做好就是用真实数据。 为了讲解线...
阅读(1562) 评论(0)

[置顶] 加州理工学院公开课:机器学习与数据挖掘_学习的可能性(第二课)

公式:Hoeffdings:p[|v-u|>e] <= 2^( -2n)...
阅读(945) 评论(0)

[置顶] 加州理工学院公开课:机器学习与数据挖掘_学习问题(第一课)

机器学习的...
阅读(1125) 评论(0)

美国公开课网址

耶鲁大学公开课程:http://oyc.yale.edu/ 麻省理工大学公开课程:http://ocw.mit.edu/ 斯坦福大学公开课程:http://itunes.stanford.edu/ 加州大学伯克利分校公开课程:http://webcast.berkeley.edu/courses.php 卡内基·梅隆大学公开课程:http://oli.web.cmu.edu/openl...
阅读(499) 评论(0)

解决方法:该站点安全证书的吊销信息不可用。是否继续?

http://blog.csdn.net/kevinhg/article/details/7395357     使用IE登录邮箱、网银或者淘宝时经常会碰到“该站点安全证书的吊销信息不可用。是否继续?”等类似的信息提示安全警报。        一般出现这样的安全警报,用户不必过多的担心所处的网络环境对帐号密码造成威胁。这种情况只不过是一种突发性的系统认证错误,一般不会涉及到正真...
阅读(1873) 评论(0)

CRF++使用小结(转)

1. 简述     最近要应用CRF模型,进行序列识别。选用了CRF++工具包,具体来说是在VS2008的C#环境下,使用CRF++的windows版本。本文总结一下了解到的和CRF++工具包相关的信息。     参考资料是CRF++的官方网站:CRF++: Yet Another CRF toolkit,网上的很多关于CRF++的博文就是这篇文章的全部或者部分的翻译,本文也翻译了一些...
阅读(508) 评论(0)

conditional random fields

原文地址 conditional random fields   This page contains material on, or relating to, conditional random fields. I shall continue to update this page as research on conditional random fie...
阅读(678) 评论(0)

MEX 文件编写基础知识

1. MEX的编写格式 写MEX程序其实就是写一个DLL程序,所以你可以使用C,C++,Fortran等多种编程语言来写。 编写MEX程序的编辑器可以使用MATLAB的代码编辑器,也可使用自己的C++编辑器,如VS2008等。 用MATLAB的编辑器的好处是,MEX函数会加粗高亮显示,这给程序编写带来便利,可惜无法动态调试。如用VC即可编译也可调试,比较方便。 mex的编译结果实际上就是一个...
阅读(454) 评论(0)

C++ 二级指针和二维数组

首先很明确的一点是:二级指针不等于二维数组。 虽然可以把二维指针当做二维数组使用,但是它们的"寻址方式"是不一样的。看如下代码: #include int main() { int **p; int cp[3][3]; for (int i = 0; i < 3; i++){ for (int j = 0; j < 3; j++){ cp[i][j] = i * 3 + j...
阅读(823) 评论(0)

计算机视觉论文

前言:最近由于工作的关系,接触到了很多篇以前都没有听说过的经典文章,在感叹这些文章伟大的同时,也顿感自己视野的狭小。  想在网上找找计算机视觉界的经典文章汇总,一直没有找到。失望之余,我决定自己总结一篇,希望对 CV 领域的童鞋们有所帮助。由于自己的视野比较狭窄,肯定也有很多疏漏,权当抛砖引玉了,如果你觉得哪篇文章是非常经典的,也可以把相关信息连带你的昵称发给我,我好补上。我的信箱 xdyang....
阅读(559) 评论(0)

Belief propagation

转:http://baoshuo.blog.163.com/blog/static/2195510512013580133867/ Belief propagation是machine learning的泰斗J. Pearl的最重要的贡献。对于统计学来说,它最重要的意义就是在于提出了一种很有效的求解条件边缘概率(conditional marginal probability)的方法。说的有...
阅读(1043) 评论(0)

关于使用cvCalcEMD2计算两个直方图间最小工作距离的限制(Why cvCalcEMD2 Throw Insufficient Memory Exception)

关于使用cvCalcEMD2计算两个直方图间最小工作距离的限制(Why cvCalcEMD2 Throw Insufficient Memory Exception) 作者:王先荣 前言     今天在使用cvCalcEMD2函数计算两个直方图的最小工作距离时,对于2维和3维的直方图,总是出现“内存不足”的异常。通过分析OpenCv的源代码,发现了其中的蹊跷,现记录如下。...
阅读(586) 评论(0)
49条 共4页1 2 3 4 下一页 尾页
    个人资料
    • 访问:53292次
    • 积分:933
    • 等级:
    • 排名:千里之外
    • 原创:37篇
    • 转载:11篇
    • 译文:1篇
    • 评论:7条
    最新评论