浅谈动态规划(四)

这一次,我们来谈谈区间dp和概率dp。

区间dp

首先,状态表示很容易想到,就是[i,j]之间的达到题目条件的要求个数值。但是初学起来,区间dp需要理解一个问题:

区间长度是从1慢慢循环到n-1的,一定是等到所有区间长度为1的值都赋好之后,才会开始区间长度为2的赋值。而赋值过程,实际上就是递推过程。每次的赋值,进行一次状态的决策。这就是区间dp

不妨先来看看几个题目。

题目描述:

   现在有n堆石子,第i堆有ai个石子。现在要把这些石子合并成一堆,每次只能合并相邻两个,每次合并的代价是两堆石子的总石子数。求合并所有石子的最小代价。

Sample Input
2
4
1 2 3 4
5
3 5 2 1 4

Sample Output
19
33

设d[i][j]为:

合并第i-j堆石子所需要的最小花费

可以得到状态转移方程:

dp[i][j]=max(dp[i][k]+dp[k+1][j]+sum[i][j])    (i<=k<=j)

然后进行初始化操作,用一个变量len来表示区间长度,放在最外面循环。

        for (int i=1; i<=n; i++){
            dp[i][i]=0;//初始化为0
            sum[i][i]=a[i];//将每堆石子的个数赋值进来
        }
        for (int len=1; len<n; len++)            //按长度从小到大枚举
            for (int i=1; i<=n&&i+len<=n; i++){         //i表示开始位置
                int j=len+i;                    //j表示长度为len的一段区间的结束位置
                for (int k=i; k<j; k++){          //用k来表示分割区间 
                    sum[i][j]=sum[i][k]+sum[k+1][j];
                    dp[i][j]=max(dp[i][j],dp[i][k]+dp[k+1][j]+sum[i][j]);
                }
            }

上面一种是比较好理解的,但是颇为复杂,另外还有一种写法:

设d[i][j]为:

以 i 为起点合并长度为 j 的石子所需的最小花费

 for(int i=1;i<=n;i++)  
     sum[i]=sum[i-1]+a[i];  
 for(int i=1;i<=n;i++) 
     for(int j=1;j<=n;j++) 
        dp[i][j]=INF;//初始化  
 for(int i=1;i<=n;i++) 
     dp[i][0]=0;//初始化

 for(int j=1;j<n;j++) 
     for(int i=1;i+j<=n;i++)    //先枚举长度j  
         for(int k=0;k<j;k++)  
             dp[i][j]=min(dp[i][j],dp[i][k]+dp[i+k+1][j-k-1]+sum[i+j]-sum[i-1]);  

题目描述:

   求出满足括号匹配的最长个数。

Sample Input
((()))
()()()
([]])
)[)(
([][][)
end

Sample Output
6
6
4
0
6

设d[i][j]为:

在[i,j]内满足括号匹配的最长个数

则分成两种情况来考虑:

(1)当s[i]与s[j]匹配:

d[i][j]=d[i-1][j-1]+2;

(2)当s[i]与s[j]不匹配:

d[i][j]=max(d[i][k]+d[k+1][j]; (k在i+1与j之间)

        memset(d,0,sizeof(d));
        int len=strlen(s);
        for(int k=1;k<len;k++)
            for(int i=0,j=k;j<len;i++,j++){
                if(s[i]=='('&&s[j]==')'||s[i]=='['&&s[j]==']')
                   d[i][j]=d[i+1][j-1]+2;
                for(int x=i;x<j;x++)
                  d[i][j]=max(d[i][j],d[i][x]+d[x+1][j]);
            }

题目描述:
给出n个数,除了第一个和第n个不能取出之外,你可以自由选择先后全部取出中间的n-1个数,但是每去一个数,需要a[i-1]*a[i]*a[i+1]的代价,如果旁边的数字已经被先取出,则再往旁边挪一位,求取出n-2个数之后,所需要花的最少的代价。

Sample Input
6
10 1 50 50 20 5

Sample Output
3650

设d[i][j]为

取出[i,j]之间的数需要的最少代价

则状态转移方程可以表示为

d[i][j]=min(d[i][k],d[k+1][j]+a[i]*a[k]*a[j])   其中k表示最后一次取出的数
        memset(d,0,sizeof(d));
        for(int len=2;len<n;len++)      //区间(i,j)之间的长度 
            for(int i=2;i+len-1<=n;i++)            {
                  int j=i+len-1;
                  d[i][j]=INF;         //赋初值要足够大 
                  for(int k=i;k<j;k++)              //类似于矩阵链乘 k表示从(i,j)中最后抽取k 
                      d[i][j]=min(d[i][j],d[i][k]+d[k+1][j]+a[i-1]*a[k]*a[j]);
            }

概率dp

概率的运算
Ø 两个互斥事件,发生任一个的概率等于两个事件的概率和
Ø 对于不相关的事件或者分步进行的事件,可以使用乘法原则。
Ø 对于一般情况p(A+B)=p(A)+p(B)-p(AB)
期望的运算
Ø E(φ)= ΣφiPi,这是期望的定义,其中φi是一个取值,而Pi是取这个值的概率
Ø 期望有“线性”,也就是说对于不相关的两个随机变量φ和ξ,E(φ±ξ)=E(φ)±E(ξ);E(φξ)=E(φ)E(ξ);E(φ/ξ)=E(φ)/E(ξ)
Ø 在某些情况下,期望可以表示成一个无穷的等比数列,然后利用极限的思想来求。

当然,这些只是最基础的知识,要解决好概率和期望的问题,还需要掌握一些组合数学的知识。

除了需要懂得一些基础的概率知识外,还需要理解概率在dp中的灵活使用。明白状态转移是如何进行的。

题目描述:
在一个图中,现在需要从点(1,1)到(R,C),每次有三种选择,待在原地,往左走一步,往下走一步,现在分别给出每一个位置三种选择的概率,并且要求,每次移动都需要消耗2点能量,求最后到达终点的平均期望值。

Sample Input
2 2
0.00 0.50 0.50 0.50 0.00 0.50
0.50 0.50 0.00 1.00 0.00 0.00

Sample Output
6.000

设d[i][j]为
从(i,j)到(R,C)所需要的平均期望(能量)

则当前有三种决策

用状态转移方程可以表示为
d[i][j] = d[i][j] * p[i][j][0] + d[i][j+1] * p[i][j][1] + d[i+1][j] * p[i][j][2] + 2
将d[i][j]项合并,系数归一,化简得到
dp[i][j] = ( p[i][j][1] * dp[i][j+1] + p[i][j][2] * dp[i+1][j] + 2) / ( 1 - p[i][j][0] )
因此逆推写法为

memset(dp,0,sizeof(dp));
for(int i=n;i>0;i--)
      for(int j=m;j>0;j--) {
            if(i==n&&j==m)   //如果不需要移动,期望也为0 
    continue;
            if(p[i][j][0]==1.0)     //留在原地的概率为1,无路可走,因此期望为0 
    continue;
           dp[i][j]+=(p[i][j][1]*dp[i][j+1]+p[i][j][2]*dp[i+1][j]+2)/(1-p[i][j][0]);
       }

题目大意:
有2^n支球队,每次剩下的相邻的两支队伍比一次,一共会进行n场比赛。求最后胜出概率最大的球队。

Sample Input
2
0.0 0.1 0.2 0.3
0.9 0.0 0.4 0.5
0.8 0.6 0.0 0.6
0.7 0.5 0.4 0.0
-1

Sample Output
2

设d[i][j]为

第 i 场 第 j 支球队胜出

那么前提条件必须是

(1)第 j 支球队和对手第 k 支球队都获胜了前 i-1 场

(2)在这一场 j 胜出了

如何寻找 j 的对手 k ?

还记得异或运算吗?(a^b)

(1)当j为奇数的时候,令j=(2n+1) 那么j的对手必定是(2n)
而 (2n+1)^1==2n
(2)当j为偶数的时候,令j=2n 此时j的对手必定为(2n+1)
而(2n)^1=2n+1

 for(int i=1;i<=n;i++)                           //2的n次方支队伍两两淘汰需要打n场 
      for(int j=0;j<m;j++)
          for(int k=0;k<m;k++)
              if(((j>>(i-1))^1)==(k>>(i-1)))                 //(2n)^1=2n+1   (2n+1)^1=2n 
                dp[i][j]+=dp[i-1][j]*dp[i-1][k]*p[j][k];

因为博主这两个方面的题目做的比较少,所以在最后推荐就不写了,汗!还是自己太菜,过一段时间,等博主有能力了,再来补上吧!

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值