治胃寒方法

转载 2006年05月22日 11:09:00

 

(转载)

①鲜姜、白糖治胃寒痛:鲜姜500克(细末),白糖250克,腌在一起;每日3次,饭前吃,每次吃1勺(普通汤匙);坚持吃一星期,一般都能见效;如没彻底好,再继续吃,直至好为止。
  ②白酒烧鸡蛋治胃寒:二锅头白酒50克,倒在茶盅里,打1个鸡蛋,把酒点燃,酒烧干了鸡蛋也熟了,早晨空胃吃。轻者吃一、二次可愈。注意鸡蛋不加任何调料。

  ③吃苹果可缓解胃酸:有的人在冬末春初,遇阴冷天或饮食不当,常泛胃酸,很难受。如果此时吃一个或半个大苹果,胃很快舒服了。

减治、分治与变治

减治:   利用了一个问题给定实例的解和同样问题较小实例的解之间的某种关系,常用的有n和n-1的关系,有了这种关系我们可以自顶向下地递归求解,也可以自底向上地迭代实现,从较小实例开始求解这一角度来看...
  • zhuanzhe117
  • zhuanzhe117
  • 2017年07月28日 18:45
  • 415

Stanford机器学习---第3讲. 逻辑回归和过拟合问题的解决 logistic Regression & Regularization

本栏目(Machine learning)包括单参数的线性回归、多参数的线性回归、Octave Tutorial、Logistic Regression、Regularization、神经网络、机器学...
  • hellotruth
  • hellotruth
  • 2014年07月20日 19:24
  • 1328

机器学习(二)线性回归与正则化项

这篇是接着我的前面的线性回归写的。之前说到为了抑制模型的复杂度,降低结构风险而在损失函数中引入了正则化项。一般情况下,正则化项有L1正则化项和L2正则化项。而线性回归损失函数通过引入其中的一个或者二者...
  • Katrina_ALi
  • Katrina_ALi
  • 2018年01月11日 20:40
  • 40

算法设计与分析-变治法

变治法是指这样一组设计方法:它们都基于变换的思想。 这些方法都分为两个阶段,变,把问题的实例变得更容易求解,治,在变的基础上对问题求解。 3种变换方式: 1)将问题变为一个更简单...
  • mengzhejin
  • mengzhejin
  • 2014年07月16日 13:22
  • 1175

(五)减治法

上节中我们讲述了分治法,分治法是把一个大问题划分为若干子问题,分别求解子问题,然后再把子问题的解进行合并得到原问题的解。而减治法同样是把大问题分解成为若干个子问题,但是这些子问题不需要分别求解,只需求...
  • lovesummerforever
  • lovesummerforever
  • 2014年01月22日 08:53
  • 4438

算法设计与分析-减治法4

前面3篇文章介绍了减治法的策略和思想,经典数据结构算法中的几个减治算法,排列,子集的减治算法。这些都是属于减一治的减治策略。 这篇文章来介绍减常因子和减可变规模的减治策略算法,当然,规模递减的越快的...
  • mengzhejin
  • mengzhejin
  • 2014年07月16日 13:24
  • 1470

3461. 在哈尔滨的寒风中(找规律)

Time limit per test: 1.0 seconds Memory limit: 256 megabytes kblack 来到了寒冬中的哈尔滨,哈尔滨的寒风令 kblack 瑟瑟发抖...
  • dreams___
  • dreams___
  • 2017年12月08日 23:23
  • 42

找工作笔试面试那些事儿(14)---轻松一下,谈谈面试注意的点

前面blablabla一通面试各种知识点和测试题,各位估计也都烦了。想来就中场休息一下,讲讲面试时候注意的东西吧。本人不才,能力一般,但去年随着笔试面试大潮还是经历了一些大大小小的笔试面试的,多少还是...
  • yaoqiang2011
  • yaoqiang2011
  • 2013年09月07日 17:25
  • 13211

算法复习--分治、减治、变治

分类: 第一部分:分治法 1.1基本思想 分而治之:将原始问题(难以解决的大问题)分解为若干个规模较小的相同的子问题,在逐个解决各个子问题的基础上,得到原始问题的解。 1.2分类 根据如何由分解出...
  • u013089220
  • u013089220
  • 2013年12月12日 10:32
  • 359

减治法求解两个升序数组的中位数

#include using namespace std; int SearchMid(int a[],int b[],int n){ int s1=0,e1=n-1,s2=0,e2=n-1; ...
  • BeyondLCG
  • BeyondLCG
  • 2017年03月30日 18:22
  • 530
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:治胃寒方法
举报原因:
原因补充:

(最多只允许输入30个字)