关闭

在Windows7/10上快速搭建深度学习框架Caffe开发环境

2305人阅读 评论(9) 收藏 举报
分类:

之前在 http://blog.csdn.net/fengbingchun/article/details/50987353 中介绍过在Windows7上搭建Caffe开发环境的操作步骤,那时caffe的项目是和其它依赖项目分开的,每次换新的PC机时再次重新配置搭建还是很不方便,而且caffe的版本较老,本次经过多次修改调整,将所有的项目除OpenCV和Boost外都放在一个工程里了,而且caffe更新到了最新,现在从GitHub上直接clone下来后直接进行编译即可,非常方便,对初步接触Caffe的来说,应该是有些帮助的,下面就说下进行快速搭建的操作步骤:

1.  OpenCV:

https://github.com/opencv/opencv/releases  下载2.4.13,解压缩到D:\soft\OpenCV2.4.13,将动态库路径D:\soft\OpenCV2.4.13\opencv\build\x64\vc12\bin添加到系统环境变量中,如下图红框所示:


2.  Boost:

http://www.boost.org/users/history/version_1_58_0.html 下载1.58.0,双击进行安装,安装到D:\ProgramFiles\local目录下,将D:\ProgramFiles\local\boost_1_58_0\lib64-msvc-12.0加入到系统环境变量中,如上图红框所示;

3.  Caffe_Test:

从  https://github.com/fengbingchun/Caffe_Test clone或DownLoad Caffe_Test工程(Note:master分支,old分支是之前旧版本caffe)到E:\GitCode目录下,clone后的结果如下图所示:


双击打开prj/x86_x64_vc12/Caffe目录下的Caffe.sln,结果如下图所示:


此工程下一共包含了19个项目:

(1)、依赖项目包括gflags、hdf5、leveldb、glog、openblas、protobuf、lmdb、snappy,这些项目都包含对相应依赖库源代码进行编译生成相应的库;

(2)、ThirdPartyLibrary_Test项目,用于测试生成各个依赖库的正确性及各个依赖库的使用;

(3)、libcaffe项目,用于生成caffe静态库;

(4)、Caffe_Test项目,用于测试caffe库的正确性及对Caffe应用的测试code;

(5)、libcaffe_gpu项目,用于生成基于GPU的caffe静态库,默认CUDA版本是8.0;

(6)、Caffe_GPU_Test项目,用于测试caffe_gpu库的正确性及对Caffe应用的测试code,此项目的code和Caffe_Test的code是同一套。

各目录说明:

(1)、demo目录存放测试code,ThirdParthLibrary_Test子目录下存放各个依赖库的简单测试代码,为了对各个依赖库的使用有更一步的了解,后续会加入更多的测试代码,此目录文件如下图所示:


Caffe_Test子目录存放对Caffe使用的测试代码,funset.cpp中存放对Caffe中一些重要头文件使用的测试代码,mnist.cpp中存放通过对MNIST数据集进行训练产生的model,以用来进行手写数字识别的测试代码,后续会加入更多的Caffe应用,如通过cifar10数据集,对物体进行分类等测试代码,此目录文件如下图所示:


(2)、prj/x86_x64_vc12目录存放各个项目配置文件,目前默认是vs2013,此目录文件如下图所示:


(3)、src目录存放caffe及除opencv和boost外各个依赖库的源代码,此目录文件如下图所示:


关于各种开源库版本详细信息(version.txt)如下所示:

1. caffe: branch: windows
	commit: 88ddc95;
	date: 2017.03.29;
	url: https://github.com/BVLC/caffe
2. boost: binary library, boost_1_58_0-msvc-12.0-64.exe
	version: 1.58.0
	date: 2015.04.17
	url:
		http://www.boost.org/
		http://www.boost.org/users/history/version_1_58_0.html
		https://sourceforge.net/projects/boost/files/boost-binaries/1.58.0/
3. protobuf: protobuf-cpp-3.2.0.zip
	commit: 593e917
	version: v3.2
	date: 2017.01.28
	url: https://github.com/google/protobuf/releases
4. glog: 
	commit: da816ea
	version: master
	date: 2017.03.07
	url: https://github.com/google/glog
5. gflags:
	commit: f8a0efe
	version: 2.2.0
	date: 2016.11.26
	url: https://github.com/gflags/gflags/releases
6. leveldb:
	commit: 915d663
	version: 1.18
	date: 2015.07.29
	url: https://github.com/bureau14/leveldb
7. lmdb:
	commit: 14cff07
	version: 0.9.19
	date: 2016.12.29
	url: https://github.com/LMDB/lmdb/releases
8. hdf5: hdf5-1.10.0-patch1.zip
	version: 1.10.0
	url: https://support.hdfgroup.org/HDF5/release/obtainsrc.html
9. snappy:
	commit: 2d99bd1
	version: 1.1.4
	date: 2017.01.27
	url: https://github.com/google/snappy/releases
10. openblas:
	commit: 85636ff
	version: 0.2.19
	date: 2016.09.01
	url: https://github.com/xianyi/OpenBLAS/releases
11. opencv:
	commit: 59975db
	version: 2.4.13
	date: 2016.05.16
	url: https://github.com/opencv/opencv/releases
(4)、test_data目录下存放各个库测试代码需要的测试数据。

接下来就可以编译Caffe_Test工程了,先依次编译依赖库再编译caffe。

此工程只配置了x64平台,没有配置win32平台。

如果机子上正确安装配置了CUDA8.0,则可以编译libcaffe_gpu库。

按照以上操作,只需三步,就可以快速完成在Windows上对Caffe的搭建,整个搭建时间应该不会超过30分钟,是不是非常方便。


GitHubhttps://github.com/fengbingchun/Caffe_Test

1
0
查看评论
发表评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场

1.深度学习框架——TensorFlow的安装与入门

研一时,从我身边的一些好基友中了解到,他们实验室用的框架都是caffe,前段时间我也在windows下尝试安装了Caffe,但白天“科研”任务中,编译时成功13个,失败3个,我还没有去找原因(大家最好...
  • qq_18297933
  • qq_18297933
  • 2016-09-08 01:39
  • 11331

深度学习框架Caffe学习笔记(1)-Caffe环境搭建

Caffe是由伯克利视觉和学习中心开发的基于C++/CUDA/Python实现的卷积神经网络,提供了面向命令行、Matlab、Python的绑定接口。
  • u013407923
  • u013407923
  • 2016-11-07 23:12
  • 1744

Linux环境下搭建DeepNet深度学习框架

由于实验室的项目需求,需要使用RBM(受限制玻尔兹曼机)、DBN(深信度网络)等深度学习的网络模型,于是学习和使用了Toronto大学提供的DeepNet深度学习框架。 DeepNet是Toronto...
  • wspba
  • wspba
  • 2016-11-27 09:29
  • 2121

Ubuntu14.04下深度学习框架Caffe的搭建

随着机器学习中神经网络技术的发展,衍生出深度学习技术,前段google公司风头一时无两的“阿尔法狗”就是深度学习的产物。而Caffe就是一款优秀的易于学习的深度学习框架。Caffe本身由c++写成,支...
  • github_37953781
  • github_37953781
  • 2017-03-17 23:17
  • 684

caffe深度学习框架在windows上的搭建

使用的是caffe for windows 是基于happynear版本的。他的博客及github介绍的很详细,这里不再赘述。 happynear博客:点击打开链接
  • chengzhongxuyou
  • chengzhongxuyou
  • 2016-02-22 10:26
  • 1756

深度学习框架Keras安装

本文转载自:http://blog.csdn.net/u012556077/article/details/50364640 之前本打算安装Caffe,但是依赖包太多了,大大小小的问题真...
  • chivalrousli
  • chivalrousli
  • 2017-01-04 14:45
  • 686

Windows环境Keras深度学习框架配置

Keras是基于Theano的一个深度学习框架,它的设计参考了Torch,用Python语言编写,是一个高度模块化的神经网络库,支持GPU和CPU,用起来特别简单,适合快速开发。1. Anaconda...
  • u010926958
  • u010926958
  • 2016-09-18 09:40
  • 2037

【深度学习Caffe】Windows编译caffe的几个问题

1.CommonSettings设置 cuda版本要填相应的,cudnn复制到cuda的路径下,其他的就不用修改了。 下面这个cuda框架要查你的gpu计算能力,按照对应的填,比如750ti是50,G...
  • dzkd1768
  • dzkd1768
  • 2017-04-05 15:56
  • 1540

Caffe学习笔记2:Windows下安装和搭建caffe框架

小菜在这里要感谢实习老师张xx,是他的无私奉献。他把他之前安装和搭建caffe框架的过程全部记录下来了写成文档了,小菜是按照他caffe学习笔记一步一步安装的,让小菜少走了许多弯路,不过小菜在安装的额...
  • xjz18298268521
  • xjz18298268521
  • 2016-08-12 11:28
  • 8403

Caffe框架源码剖析(1)—构建网络

今天花了一整天时间进行阅读和调试Caffe框架代码,单单是以Lenet网络进行测试就可见框架的大致工作原理。贾扬清在Caffe中大量使用了STL、模板、智能指针,有些地方为了效率也牺牲了一些代码可读性...
  • tianrolin
  • tianrolin
  • 2016-05-18 21:02
  • 2468
    个人资料
    • 访问:3519179次
    • 积分:34987
    • 等级:
    • 排名:第143名
    • 原创:515篇
    • 转载:140篇
    • 译文:0篇
    • 评论:1896条
    最新评论