矩阵伪逆介绍及C++/OpenCV/Eigen的三种实现

矩阵A的伪逆(Moore-Penrose pseudoinverse)定义为:A+=VD+UT,其中,U,D和V是矩阵A奇异值分解后得到的矩阵。对角矩阵D的伪逆D+是非零元素取倒数之后再转置得到的。

当矩阵A的列数多于行数时,使用伪逆求解线性方程是众多可能解法中的一种。特别地,x=A+y是方程所有可行解中欧几里得范数‖x‖2最小的一个。

当矩阵A的行数多于列数时,可能没有解。在这种情况下,通过伪逆得到的x使得Ax和y的欧几里得距离‖Ax-y‖2最小。

广义逆阵(generalized inverse)也称为伪逆矩阵(pseudoinverse),是在数学矩阵领域内的名词,一矩阵A的广义逆阵是指另一矩阵具有部分逆矩阵的特性,但是不一定具有逆矩阵的所有特性。假设一矩阵A∈Rn*m及另一矩阵Agm*n,若Ag满足此条件,AAgA=A,则Ag即为A的逆矩阵。构建广义逆阵的目的是针对可逆矩阵以外的矩阵(例如非方阵的矩阵)可以找到一矩阵有一些类似逆矩阵的特性。任意的矩阵都存在广义逆阵,若一矩阵存在逆矩阵,逆矩阵即为其唯一的广义逆阵。有些广义逆阵可以定义在和结合律乘法有关的数学结构中。可以借助SVD(奇异值分解)来求解伪逆。

以上内容摘自:《深度学习中文版》 和 维基百科

以下是分别采用C++和OpenCV实现的求矩阵伪逆:

#include "funset.hpp"
#include <math.h>
#include <iostream>
#include <string>
#include <vector>
#include <opencv2/opencv.hpp>
#include "common.hpp"

// ================================= 求伪逆矩阵 =================================
template<typename _Tp>
int pinv(const std::vector<std::vector<_Tp>>& src, std::vector<std::vector<_Tp>>& dst, _Tp tolerance)
{
	std::vector<std::vector<_Tp>> D, U, Vt;
	if (svd(src, D, U, Vt) != 0) {
		fprintf(stderr, "singular value decomposition fail\n");
		return -1;
	}

	int m = src.size();
	int n = src[0].size();

	std::vector<std::vector<_Tp>> Drecip, DrecipT, Ut, V;

	transpose(Vt, V);
	transpose(U, Ut);

	if (m < n)
		std::swap(m, n);

	Drecip.resize(n);
	for (int i = 0; i < n; ++i) {
		Drecip[i].resize(m, (_Tp)0);

		if (D[i][0] > tolerance)
			Drecip[i][i] = 1.0f / D[i][0];
	}

	if (src.size() < src[0].size())
		transpose(Drecip, DrecipT);
	else
		DrecipT = Drecip;

	std::vector<std::vector<_Tp>> tmp = matrix_mul(V, DrecipT);
	dst = matrix_mul(tmp, Ut);

	return 0;
}

template<typename _Tp> // mat1(m, n) * mat2(n, p) => result(m, p)
static std::vector<std::vector<_Tp>> matrix_mul(const std::vector<std::vector<_Tp>>& mat1, const std::vector<std::vector<_Tp>>& mat2)
{
	std::vector<std::vector<_Tp>> result;
	int m1 = mat1.size(), n1 = mat1[0].size();
	int m2 = mat2.size(), n2 = mat2[0].size();
	if (n1 != m2) {
		fprintf(stderr, "mat dimension dismatch\n");
		return result;
	}

	result.resize(m1);
	for (int i = 0; i < m1; ++i) {
		result[i].resize(n2, (_Tp)0);
	}

	for (int y = 0; y < m1; ++y) {
		for (int x = 0; x < n2; ++x) {
			for (int t = 0; t < n1; ++t) {
				result[y][x] += mat1[y][t] * mat2[t][x];
			}
		}
	}

	return result;
}

// ================================= 矩阵奇异值分解 =================================
template<typename _Tp>
static void JacobiSVD(std::vector<std::vector<_Tp>>& At,
	std::vector<std::vector<_Tp>>& _W, std::vector<std::vector<_Tp>>& Vt)
{
	double minval = FLT_MIN;
	_Tp eps = (_Tp)(FLT_EPSILON * 2);
	const int m = At[0].size();
	const int n = _W.size();
	const int n1 = m; // urows
	std::vector<double> W(n, 0.);

	for (int i = 0; i < n; i++) {
		double sd{0.};
		for (int k = 0; k < m; k++) {
			_Tp t = At[i][k];
			sd += (double)t*t;
		}
		W[i] = sd;

		for (int k = 0; k < n; k++)
			Vt[i][k] = 0;
		Vt[i][i] = 1;
	}

	int max_iter = std::max(m, 30);
	for (int iter = 0; iter < max_iter; iter++) {
		bool changed = false;
		_Tp c, s;

		for (int i = 0; i < n - 1; i++) {
			for (int j = i + 1; j < n; j++) {
				_Tp *Ai = At[i].data(), *Aj = At[j].data();
				double a = W[i], p = 0, b = W[j];

				for (int k = 0; k < m; k++)
					p += (double)Ai[k] * Aj[k];

				if (std::abs(p) <= eps * std::sqrt((double)a*b))
					continue;

				p *= 2;
				double beta = a - b, gamma = hypot_((double)p, beta);
				if (beta < 0) {
					double delta = (gamma - beta)*0.5;
					s = (_Tp)std::sqrt(delta / gamma);
					c = (_Tp)(p / (gamma*s * 2));
				} else {
					c = (_Tp)std::sqrt((gamma + beta) / (gamma * 2));
					s = (_Tp)(p / (gamma*c * 2));
				}

				a = b = 0;
				for (int k = 0; k < m; k++) {
					_Tp t0 = c*Ai[k] + s*Aj[k];
					_Tp t1 = -s*Ai[k] + c*Aj[k];
					Ai[k] = t0; Aj[k] = t1;

					a += (double)t0*t0; b += (double)t1*t1;
				}
				W[i] = a; W[j] = b;

				changed = true;

				_Tp *Vi = Vt[i].data(), *Vj = Vt[j].data();

				for (int k = 0; k < n; k++) {
					_Tp t0 = c*Vi[k] + s*Vj[k];
					_Tp t1 = -s*Vi[k] + c*Vj[k];
					Vi[k] = t0; Vj[k] = t1;
				}
			}
		}

		if (!changed)
			break;
	}

	for (int i = 0; i < n; i++) {
		double sd{ 0. };
		for (int k = 0; k < m; k++) {
			_Tp t = At[i][k];
			sd += (double)t*t;
		}
		W[i] = std::sqrt(sd);
	}

	for (int i = 0; i < n - 1; i++) {
		int j = i;
		for (int k = i + 1; k < n; k++) {
			if (W[j] < W[k])
				j = k;
		}
		if (i != j) {
			std::swap(W[i], W[j]);

			for (int k = 0; k < m; k++)
				std::swap(At[i][k], At[j][k]);

			for (int k = 0; k < n; k++)
				std::swap(Vt[i][k], Vt[j][k]);
		}
	}

	for (int i = 0; i < n; i++)
		_W[i][0] = (_Tp)W[i];

	srand(time(nullptr));

	for (int i = 0; i < n1; i++) {
		double sd = i < n ? W[i] : 0;

		for (int ii = 0; ii < 100 && sd <= minval; ii++) {
			// if we got a zero singular value, then in order to get the corresponding left singular vector
			// we generate a random vector, project it to the previously computed left singular vectors,
			// subtract the projection and normalize the difference.
			const _Tp val0 = (_Tp)(1. / m);
			for (int k = 0; k < m; k++) {
				unsigned int rng = rand() % 4294967295; // 2^32 - 1
				_Tp val = (rng & 256) != 0 ? val0 : -val0;
				At[i][k] = val;
			}
			for (int iter = 0; iter < 2; iter++) {
				for (int j = 0; j < i; j++) {
					sd = 0;
					for (int k = 0; k < m; k++)
						sd += At[i][k] * At[j][k];
					_Tp asum = 0;
					for (int k = 0; k < m; k++) {
						_Tp t = (_Tp)(At[i][k] - sd*At[j][k]);
						At[i][k] = t;
						asum += std::abs(t);
					}
					asum = asum > eps * 100 ? 1 / asum : 0;
					for (int k = 0; k < m; k++)
						At[i][k] *= asum;
				}
			}

			sd = 0;
			for (int k = 0; k < m; k++) {
				_Tp t = At[i][k];
				sd += (double)t*t;
			}
			sd = std::sqrt(sd);
		}

		_Tp s = (_Tp)(sd > minval ? 1 / sd : 0.);
		for (int k = 0; k < m; k++)
			At[i][k] *= s;
	}
}

// matSrc为原始矩阵,支持非方阵,matD存放奇异值,matU存放左奇异向量,matVt存放转置的右奇异向量
template<typename _Tp>
int svd(const std::vector<std::vector<_Tp>>& matSrc,
	std::vector<std::vector<_Tp>>& matD, std::vector<std::vector<_Tp>>& matU, std::vector<std::vector<_Tp>>& matVt)
{
	int m = matSrc.size();
	int n = matSrc[0].size();
	for (const auto& sz : matSrc) {
		if (n != sz.size()) {
			fprintf(stderr, "matrix dimension dismatch\n");
			return -1;
		}
	}

	bool at = false;
	if (m < n) {
		std::swap(m, n);
		at = true;
	}

	matD.resize(n);
	for (int i = 0; i < n; ++i) {
		matD[i].resize(1, (_Tp)0);
	}
	matU.resize(m);
	for (int i = 0; i < m; ++i) {
		matU[i].resize(m, (_Tp)0);
	}
	matVt.resize(n);
	for (int i = 0; i < n; ++i) {
		matVt[i].resize(n, (_Tp)0);
	}
	std::vector<std::vector<_Tp>> tmp_u = matU, tmp_v = matVt;

	std::vector<std::vector<_Tp>> tmp_a, tmp_a_;
	if (!at)
		transpose(matSrc, tmp_a);
	else
		tmp_a = matSrc;

	if (m == n) {
		tmp_a_ = tmp_a;
	} else {
		tmp_a_.resize(m);
		for (int i = 0; i < m; ++i) {
			tmp_a_[i].resize(m, (_Tp)0);
		}
		for (int i = 0; i < n; ++i) {
			tmp_a_[i].assign(tmp_a[i].begin(), tmp_a[i].end());
		}
	}
	JacobiSVD(tmp_a_, matD, tmp_v);

	if (!at) {
		transpose(tmp_a_, matU);
		matVt = tmp_v;
	} else {
		transpose(tmp_v, matU);
		matVt = tmp_a_;
	}

	return 0;
}

int test_pseudoinverse()
{
	//std::vector<std::vector<float>> vec{ { 0.68f, 0.597f },
	//				{ -0.211f, 0.823f },
	//				{ 0.566f, -0.605f } };
	//const int rows{ 3 }, cols{ 2 };

	std::vector<std::vector<float>> vec{ { 0.68f, 0.597f, -0.211f },
						{ 0.823f, 0.566f, -0.605f } };
	const int rows{ 2 }, cols{ 3 };

	fprintf(stderr, "source matrix:\n");
	print_matrix(vec);

	fprintf(stderr, "\nc++ implement pseudoinverse:\n");
	std::vector<std::vector<float>> pinv1;
	float  pinvtoler = 1.e-6;
	if (pinv(vec, pinv1, pinvtoler) != 0) {
		fprintf(stderr, "C++ implement pseudoinverse fail\n");
		return -1;
	}
	print_matrix(pinv1);

	fprintf(stderr, "\nopencv implement pseudoinverse:\n");
	cv::Mat mat(rows, cols, CV_32FC1);
	for (int y = 0; y < rows; ++y) {
		for (int x = 0; x < cols; ++x) {
			mat.at<float>(y, x) = vec.at(y).at(x);
		}
	}

	cv::Mat pinv2;
	cv::invert(mat, pinv2, cv::DECOMP_SVD);
	print_matrix(pinv2);

	return 0; 
}
执行结果如下:

以下是采用Eigen实现的求矩阵伪逆code:

#include "funset.hpp"
#include <math.h>
#include <iostream>
#include <vector>
#include <string>
#include <opencv2/opencv.hpp>
#include <Eigen/Dense>
#include "common.hpp"

int test_pseudoinverse()
{
	//std::vector<std::vector<float>> vec{ { 0.68f, 0.597f },
	//				{ -0.211f, 0.823f },
	//				{ 0.566f, -0.605f } };
	//const int rows{ 3 }, cols{ 2 };

	std::vector<std::vector<float>> vec{ { 0.68f, 0.597f, -0.211f },
					{ 0.823f, 0.566f, -0.605f } };
	const int rows{ 2 }, cols{ 3 };

	std::vector<float> vec_;
	for (int i = 0; i < rows; ++i) {
		vec_.insert(vec_.begin() + i * cols, vec[i].begin(), vec[i].end());
	}
	Eigen::Map<Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>> m(vec_.data(), rows, cols);

	fprintf(stderr, "source matrix:\n");
	std::cout << m << std::endl;

	fprintf(stderr, "\nEigen implement pseudoinverse:\n");
	auto svd = m.jacobiSvd(Eigen::ComputeFullU | Eigen::ComputeFullV);

	const auto &singularValues = svd.singularValues();
	Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic> singularValuesInv(m.cols(), m.rows());
	singularValuesInv.setZero();
	double  pinvtoler = 1.e-6; // choose your tolerance wisely
	for (unsigned int i = 0; i < singularValues.size(); ++i) {
		if (singularValues(i) > pinvtoler)
			singularValuesInv(i, i) = 1.0f / singularValues(i);
		else
			singularValuesInv(i, i) = 0.f;
	}

	Eigen::MatrixXf pinvmat = svd.matrixV() * singularValuesInv * svd.matrixU().transpose();
	std::cout << pinvmat << std::endl;

	return 0;
}
执行结果如下:

由以上结果可见:C++、OpenCV、Eigen实现结果是一致的

GitHub

https://github.com/fengbingchun/NN_Test
https://github.com/fengbingchun/Eigen_Test

  • 10
    点赞
  • 54
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
手眼标定是指将机械臂的末端执行器与相机之间的相对姿态关系确定下来,这样可以用机械臂控制相机来实现精确的视觉引导。在手眼标定中,需要使用到相机的内外参数,机械臂的关节角度和末端执行器的位姿。下面介绍一种用C++实现手眼标定的方法。 1. 准备数据 首先需要获取机械臂的关节角度和末端执行器的位姿,以及相机的内外参数。可以通过机械臂的编程接口获取机械臂的状态信息,也可以手动记录机械臂运动时的关节角度和末端执行器位姿。相机的内外参数可以通过相机标定软件获取,例如OpenCV中的Camera Calibration。 2. 实现标定算法 手眼标定通常使用四元数来表示姿态关系,因为四元数可以避免万向锁问题。手眼标定的过程可以分为两步:计算机械臂的姿态变换矩阵和相机的姿态变换矩阵,然后通过求解手眼标定问题得到机械臂与相机的相对姿态矩阵。 计算机械臂的姿态变换矩阵可以通过机械臂的正运动学求解,计算相机的姿态变换矩阵可以通过相机的位姿信息求解,例如通过相机标定得到的旋转矩阵和平移矩阵。 通过求解手眼标定问题,可以得到机械臂与相机之间的相对姿态矩阵。手眼标定问题通常使用最小二乘法求解,可以使用OpenCV中的solvePnP函数求解。 3. 实现代码 下面是一个用C++OpenCV实现手眼标定的代码示例: ``` #include <opencv2/opencv.hpp> #include <opencv2/core/eigen.hpp> #include <Eigen/Dense> using namespace cv; void handEyeCalibration(const std::vector<Mat>& robotPoses, const std::vector<Mat>& cameraPoses, Mat& H) { int n = robotPoses.size(); Mat A = Mat::zeros(n * 6, 6, CV_64F); Mat B = Mat::zeros(n * 6, 1, CV_64F); for (int i = 0; i < n - 1; i++) { Mat Ri1, ti1, Ri2, ti2; cv::Matx33d R1(cameraPoses[i](cv::Rect(0, 0, 3, 3))), R2(cameraPoses[i + 1](cv::Rect(0, 0, 3, 3))); cv::Vec3d t1(cameraPoses[i](cv::Rect(3, 0, 1, 3))), t2(cameraPoses[i + 1](cv::Rect(3, 0, 1, 3))); cv::Rodrigues(R1, Ri1); cv::Rodrigues(R2, Ri2); cv::Matx33d Ri = R2 * R1.t(); cv::Vec3d ti = t2 - R2 * t1; cv::Matx33d Ti(robotPoses[i](cv::Rect(0, 0, 3, 3))), Hi(robotPoses[i + 1](cv::Rect(0, 0, 3, 3))); cv::Vec3d pi(robotPoses[i](cv::Rect(3, 0, 1, 3))), hi(robotPoses[i + 1](cv::Rect(3, 0, 1, 3))); cv::Matx33d HiTi = Hi * Ti.t(); cv::Vec3d hi_ti = hi - Hi * ti; cv::Matx33d A1 = Ri.t() - cv::Matx33d::eye(); cv::Matx33d A2 = HiTi - cv::Matx33d::eye(); cv::Matx33d A3 = Hi * Ti.t() - Ri.t() * Hi; cv::Matx33d A4 = Hi * Ti.t() - cv::Matx33d::eye(); cv::Vec3d b1 = hi_ti; cv::Vec3d b2 = Hi * pi - pi * Ri.t(); cv::Vec3d b3 = Hi * ti - ti * Ri.t(); Mat Ai, Bi; cv::vconcat(Mat(A1), Mat(A2), Ai); cv::vconcat(Ai, Mat(A3), Ai); cv::vconcat(Ai, Mat(A4), Ai); cv::vconcat(Mat(b1), Mat(b2), Bi); cv::vconcat(Bi, Mat(b3), Bi); int idx = i * 6; Ai.copyTo(A.rowRange(idx, idx + 6)); Bi.copyTo(B.rowRange(idx, idx + 6)); } Mat X; solve(A, B, X, DECOMP_SVD); H = Mat::eye(4, 4, CV_64F); X.rowRange(0, 3).col(0).copyTo(H.rowRange(0, 3).col(0)); X.rowRange(3, 6).col(0).copyTo(H.rowRange(0, 3).col(1)); X.rowRange(6, 9).col(0).copyTo(H.rowRange(0, 3).col(2)); X.rowRange(9, 12).col(0).copyTo(H.rowRange(0, 3).col(3)); } int main() { std::vector<Mat> robotPoses; // 机械臂位姿 std::vector<Mat> cameraPoses; // 相机位姿 // 加载机械臂位姿和相机位姿 Mat H; handEyeCalibration(robotPoses, cameraPoses, H); std::cout << "Hand-eye calibration result: " << std::endl << H << std::endl; return 0; } ``` 其中,robotPoses和cameraPoses分别是机械臂和相机的位姿序列,H是求解得到的机械臂与相机之间的相对姿态矩阵。通过solve函数求解线性方程组得到H,然后将H转换为4x4的变换矩阵即可。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值