离散小波变换的matlab应用

转载 2013年12月02日 11:12:48

一维离散小波分析

工具箱提供了如下函数做一维信号分析:

 

Function Name

Purpose

分解函数

dwt

一层分解

wavedec

分解

wmaxlev

最大小波分解层数

重构函数

idwt

一层重构

waverec

全重构

wrcoef

有选择性重构

upcoef

单一重构

分解结构工具

detcoef

细节系数抽取

appcoef

近似系数抽取

upwlev

分解结构重排

去噪和压缩

ddencmp

使用默认进行去噪和压缩

wbmpen

使用处罚门槛进行一维或二维去噪

wdcbm

使用处罚门槛进行一维(使用Birgé-Massart方法)

wdencmp

小波去噪和压缩

wden

自适应小波去噪

wthrmngr

门槛设置管理

在这一部分,可以学到

l 加载信号

l 执行一层小波分解

l 从系数重建近似和细节

l 显示近似和细节

l 通过逆小波变换重建信号

l 执行多层小波分解

l 抽取近似系数和细节系数

l 重构第三层近似

l 重构第1、2、3层细节

l 显示多层分解的结果

l 从第三层分解重构原始信号

l 从信号中去除噪声

l 改善分析

l 压缩信号

l 显示信号的统计信息和直方图

 

一维分析---使用命令行

这个例子包含一个真实世界的信号---测量3天的电功耗。这个信号很典型,因为它包含一个明显的测量噪声,而小波分析可以有效的移除噪声。

image

1. 加载信号

load leleccum

截取信号

s = leleccum(1:3920);

l_s = length(s);

2. 对信号执行一层小波分解

使用db1小波执行一层小波分解,执行下面的语句产生近似系数cA1、细节系数cD1

[cA1,cD1] = dwt(s,'db1');

3. 从系数中构建近似和细节

从系数cA1和cD1中构建一层近似A1和细节D1,执行以下代码

A1 = upcoef('a',cA1,'db1',1,l_s);

D1 = upcoef('d',cD1,'db1',1,l_s);

A1 = idwt(cA1,[],'db1',l_s);

D1 = idwt([],cD1,'db1',l_s);

4. 显示近似和细节

subplot(1,2,1); plot(A1); title('Approximation A1')

subplot(1,2,2); plot(D1); title('Detail D1')

image

5. 使用逆小波变换恢复信号

A0 = idwt(cA1,cD1,'db1',l_s);

err = max(abs(s-A0))

err =

2.2737e-013

6. 执行多层小波分解

执行3层信号分解

[C,L] = wavedec(s,3,'db1');

函数返回3层分解的各组分系数C(连接在一个向量里),向量L里返回的是各组分的长度。分解的结构如下

image

7. 抽取近似系数和细节系数

从C中抽取3层近似系数

cA3 = appcoef(C,L,'db1',3);

从C中抽取3、2、1层细节系数

cD3 = detcoef(C,L,3);

cD2 = detcoef(C,L,2);

cD1 = detcoef(C,L,1);

或者

[cD1,cD2,cD3] = detcoef(C,L,[1,2,3]);

结果显示如下,从上到下依次为原始信号、3层近似系数和3~1层细节系数

image

1. 重建3层近似和1、2、3层细节

从C中重建3层近似

A3 = wrcoef('a',C,L,'db1',3);

从C中重建1、2、3层细节

D1 = wrcoef('d',C,L,'db1',1);

D2 = wrcoef('d',C,L,'db1',2);

D3 = wrcoef('d',C,L,'db1',3);

2. 显示多层分解的结果

显示3层分解的结果

subplot(2,2,1); plot(A3);

title('Approximation A3')

subplot(2,2,2); plot(D1);

title('Detail D1')

subplot(2,2,3); plot(D2);

title('Detail D2')

subplot(2,2,4); plot(D3);

title('Detail D3')

image

10. 从3层分解中重建原始信号

A0 = waverec(C,L,'db1');

err = max(abs(s-A0))

err =

4.5475e-013

11. 粗糙的去噪信号

使用小波从信号中移除噪声需要辨识哪个或哪些组分包含噪声,然后重建没有这些组分的信号。

在这个例子中,我们注意到连续的近似随着越来越多的高频信息从信号中滤除,噪声变得越来越少。3层近似与原始信号对比会发现变得很干净。对比近似和原始信号,如下

subplot(2,1,1);plot(s);title('Original'); axis off

subplot(2,1,2);plot(A3);title('Level 3 Approximation');

axis off

image

当然,摒弃所有高频信息,我们会失去原始信号中的很多最尖锐的特征。最佳的去噪需要通过一种更精细的叫阈值方法,它只丢弃部分超过一定范围的细节。

12. 通过阈值去除噪声

先来看3层分析的细节

subplot(3,1,1); plot(D1); title('Detail Level 1'); axis off

subplot(3,1,2); plot(D2); title('Detail Level 2'); axis off

subplot(3,1,3); plot(D3); title('Detail Level 3'); axis off

image

从图中可以看到,大多数噪声发生在信号的后面部分,表现在细节上就是出现大波动的地方。如果我们通过设定最大值来限定细节强度,会怎么样呢?这会有降低噪声效果,同时保留不影响的必要细节。这是一种很好的方法。

注意到cD1,cD2,cD3是向量,那么我们就可以通过直接操纵这些向量来达到目的,即设置这些向量小于其峰值或平均值的一部分,然后就可以由这些设定了阈值的系数重建新的细节信号D1、D2、D3。

实际去噪过程中,可以使用ddencmp函数来计算默认的阈值参数,然后用wdencmp函数来执行实际的去噪过程,代码如下

[thr,sorh,keepapp] = ddencmp('den','wv',s);

clean = wdencmp('gbl',C,L,'db1',3,thr,sorh,keepapp);

注意wdencmp使用了第6步中小波分解的结果C、L,另外指定了db1小波来做分析,指定全局阈值选项gb1.详细参见ddencmp函数和wdencmp函数。

显示原始信号和去噪信号如下

subplot(2,1,1); plot(s(2000:3920)); title('Original')

subplot(2,1,2); plot(clean(2000:3920)); title('denoised')

image

这里我们只绘制了原始信号中包含噪声的部分,特别注意我们是如何在移除了噪声的情况下仍保持原有的尖锐细节的,这也是小波分析强大的地方。

使用命令行函数去除噪声是很笨拙的,而图形工具提供了一种更方便使用的自动化阈值去噪方式。

关于去噪过程的更多信息可以在下面的部分找到:

* Remove noise from a signal 从一个信号中去除噪声

*De-Noising in the Wavelet Toolbox User's Guide 小波工具箱中的除噪

*One-Dimensional Variance Adaptive Thresholding of Wavelet Coefficients 一维小波系数自适应阈值

*One-Dimensional Variance Adaptive Thresholding of Wavelet Coeffiients in the Wavelet Toolbox User's Guide

 

使用图形接口做一维分析

1. 开启一维小波分析工具

Wavemenu->Wavelet 1-D

2. 加载信号

3. 执行一层小波分解

使用db1小波执行一层分解

image

4. 放大有关细节

5. 执行多层小波分解

使用db1小波执行3层分解。

选择不同的显示方式:在Display mode下拉菜单下可以选择不同的显示方式,默认的显示方式为Full Decomposition Mode,其他的显示方式及其意义如下

Separate Mode:在不同的列中显示细节和近似;

Superimpose Mode:在一张图上以不同的颜色显示细节、近似;

Tree Mode:显示分解树、原始信号和选择的成分,在分解树上选择你想显示的成分;

Show and Scroll Mode:显示3个窗口,第一个显示原始信号和选择的近似信号,第二个显示选择的细节,第三个显示小波系数;

Show and Scroll Mode(Stem Cfs):和Show and Scroll Mode很接近,除了第三个窗口中以杆状图替代颜色条显示小波系数。

对于每个分析任务,可以改变默认的显示方式,只要在View->Default Display Mode子菜单下选择理想的方式即可;不同的显示方式会有额外的显示选项,在More Display Options中做选择,这些选项可以控制不同成分的显示、选择是否显示原始信号与细节、近似对比。

6. 从信号中移除噪声

图形接口提供了以预定义的阈值策略除噪的选项,这使得从信号中除噪非常容易,只需点击De-noise按钮就可以弹出除噪工具。

点击Close可以关闭除噪窗口,由于不能同时打开除噪和压缩窗口,所以需要关闭除噪窗口再进行信号压缩。关闭时会提示Update Synthesized Signal提示对话框,点击No,如果点击Yes,合成的信号会加载到主窗口。

7. 改善分析

图像工具可以在任何时候轻易的改善分析,只需要改变分析的方法就可以了,如使用db3做5层小波分析。

8. 压缩信号

图形接口提供了自动化或人工阈值的做压缩的功能。

默认使用的是全阈值方法,当然也可以使用人工阈值的方法,选择By Level thresholding选项即可,下面的滑动条提供了各级阈值独立调整的功能,相应的调整可以在左边的窗口中看到,在图形窗口中也可以直接拖动来改变阈值。

完成选择后,点击压缩按钮可以完成压缩。从压缩的结果可以看到,压缩过程去除了大多数噪声,但保存了信号99.74%的能量。自动化阈值是非常有效的,它使除3.2%的小波系数都归零化了。

9. 显示残差

点击Residuals按钮可以查看压缩的残差。显示的统计数据包括测量的趋势(平均值、众数、中值)和散布情况(极差、标准差)。另外,工具还提供了概率分布直方图和累计直方图以及时间序列图,如自相关函数、频谱。这些都是和去噪工具是一样的。

10. 显示统计分布

可以显示一系列有关信号及其组分的统计数据。

点击Statistics按钮可以查看统计数据信息,点击Histograms可以查看直方图。

 

从图形接口中导入导出信息

保存信息

l 保存合成的信号

如加载如下信号File > Example Analysis > Basic Signals > with db3 at level 5 → Sum of sines,做除噪或压缩处理后,保存合成信号File > Save > Synthesized Signal,保存后加载文件,会得到如下变量:

如果使用除全阈值外的方法时,得到的变量结构如下

image

Synthsig是合成的信号,除噪或压缩的小波方法保存在wname中,相互依赖的各级阈值保存在thrParams中,小波分解的等级数和cell的长度相等,thrParams{i},i从1到5分别保存了阈值间距上下限的值和阈值(间距阈值是允许的,在自适应阈值方法中会用到,参见One-Dimensional Variance Adaptive Thresholding of Wavelet Coefficients)

如果使用的全阈值方法,保存的数据结构如下

image

alTHR保存的是全阈值的值。

l 保存离散小波变换的系数

一个例子的文件内容如下

image

Coefs包含了离散小波变换的系数,longs包含了各组分的长度,thrParams为空,因为合成信号不存在,wname是小波的名字。

l 保存分解结果(即保存小波分析的全体数据)

小波工具将保存为.wal文件,加载方式为

load wdecex1d.wa1 –mat

文件内容为

image

加载信息

加载的文件只要和保存的相应文件中的变量一样即可。

基于Matlab的离散小波变换

简介 在数字图像处理中,需要将连续的小波及其小波变换离散化。一般计算机实现中使用二进制离散处理,将经过这种离散化的小波及其相应的小波变换成为离散小波变换(简称DWT)。实际上,离散小波变换是对连续小...
  • chenhuijie666
  • chenhuijie666
  • 2015年10月11日 16:50
  • 5705

离散二维小波变换 MATLAB

由于图像是二维信号,二维小波变换应用到图像处理的基本思路是把小波变换有一维推广到二维。 下面是离散二维(harr)小波变换MATLAB代码的实现: clear;clc; %%%%%%%%%%测试图...
  • u013146742
  • u013146742
  • 2016年09月06日 15:29
  • 2019

连续小波变换、离散小波变换、二进小波变换、离散序列的小波变换、小波包

初学小波者尤其是有数字信号处理基础的初学者,很容易拿傅里叶变换与小波变换对比着学习,但容易造成越比越混乱的现象,比如Matlab里fft函数所做的事就是离散傅里叶变换DFT,但Matlab里的dwt函...
  • jbb0523
  • jbb0523
  • 2015年01月09日 14:36
  • 16022

压缩感知稀疏基之离散小波变换

看小波变换的时间超过半个月了,到今天为止终于可以得到小波变换矩阵(小波基)了,该陆续写一些总结了,这一篇给出最核心的东西:在Matlab中如何得到小波变换矩阵? 我看小波变换的最终目的也是为了得到小波...
  • jbb0523
  • jbb0523
  • 2015年01月06日 22:23
  • 18018

小波的秘密3_连续、离散小波变换定义

1.前言 小波变换主要包括连续小波变换和离散小波变换。本篇博客主要想弄清楚连续小波变换、离散小波变换、高维小波连续变换的意义。 2.连续小波变换 2.1 连续小波变换的定义 将任意L2(R)空间...
  • shenziheng1
  • shenziheng1
  • 2016年11月01日 16:17
  • 2991

离散小波变换(DWT)整理

毕业设计涉及到对信号的去噪操作,而一维的离散小波变换可以运用在信号降噪中。因此对离散小波变换展开了调研,将内容整理如下。 离散小波变换(Discrete Wavelet Transformation)...
  • ljh0302
  • ljh0302
  • 2016年04月20日 18:05
  • 8564

小波分析:三、二维离散小波变换

四、二维离散小波变换声明: 该文为本人对小波的理解,不保证正确性与严谨性。参考: 《数字图像处理》 Gonzalez P3171. 概述在给定尺度函数和小波函数下,可以组合出一个二维尺度函数和三个二维...
  • autoliuweijie
  • autoliuweijie
  • 2016年04月20日 20:21
  • 2038

图像二维离散小波变换

这两天接触图像多尺度分解的一些内容,主要重点在EMD(empirical mode decomposition)——BEMD(bidimensional empirical mode decompos...
  • daisy9212
  • daisy9212
  • 2015年10月16日 21:45
  • 7984

小波变换在数字图像上的应用(上)

小波变换在数字图像上的应用(上)小波变换原理的简单概述一维小波变换 关于一维连续小波和离散小波变换的公式只能抱书啃了,这里给出一张图展示小包变换分析的一些特点。 第一幅图是原始信号,其右侧是它的傅里叶...
  • Terrenceyuu
  • Terrenceyuu
  • 2017年03月19日 10:42
  • 1028

离散小波变换(DWT)

离散小波变换(Discrete Wavelet Transformation) 一、定义(摘自百度百科): 首先我们定义一些需要用到的信号及滤波器。x[n]:离散的输入信号,长度为N。g[n]:l...
  • zhuguorong11
  • zhuguorong11
  • 2017年04月28日 23:38
  • 631
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:离散小波变换的matlab应用
举报原因:
原因补充:

(最多只允许输入30个字)