置信度传播算法(Belief Propagation)

基础知识 

条件概率(Conditional Probability)   





 

相互独立时,p(A | B) = p(A)

 

贝叶斯规则


贝叶斯网络(Bayesian Network)定了一个独立的结构:一个节点的概率仅依赖于它的父节点。贝叶斯网络适用于稀疏模型,即大部分节点之间不存在任何直接的依赖关系。





 

联合概率(Joint Probability),表示所有节点共同发生的概率,将所有条件概率相乘:



 

我们最终的目标是计算准确的边缘概率(Marginal Probability),比如计算Hangover的概率,边缘概率为各种状态下所有其他节点对本节点影响的概率的和


边缘概率(Marginal Probability):即

  • 39
    点赞
  • 217
    收藏
    觉得还不错? 一键收藏
  • 39
    评论
高斯信念传播算法(Gaussian Belief Propagation)是一种用于解决概率图模型的推理问题的算法。它能够在复杂的图模型中进行高效的推理,并估计变量节点的边缘概率分布。下面是该算法的伪码实现: 1. 输入:图模型G=(V,E),其中V为变量节点集合,E为边集合; 2. 初始化:对于每个变量节点v∈V,初始化其边缘概率分布为高斯分布N(μ_v,σ_v^2); 3. Repeat until convergence: 4. for each 边e_ij∈E do: 5. if e_ij为一条消息发送边 then: 6. 计算消息m_ji(v_i)发送给节点v_i的边缘概率分布: 7. m_ji(v_i) = N(μ_ji(v_i),σ_ji(v_i)^2),其中μ_ji(v_i)和σ_ji(v_i)分别为其他节点v_k(k≠i,j)发来的消息的边缘统计量; 8. for each 节点v_i∈V do: 9. 计算节点v_i的后验边缘概率分布: 10. p_i(v_i) ∝ N(μ_i,σ_i^2) * ∏_{v_j∈N(i)}(m_ji(v_i)),其中N(i)为节点v_i的邻居节点集合; 11. 根据节点v_i的后验边缘概率分布更新节点v_i的边缘统计量μ_i和σ_i; 12. 输出:每个变量节点v的边缘概率分布p(v)。 该算法使用了高斯消息传递的思想,通过节点之间的信息传递逐步更新节点的边缘概率分布。其中,步骤6中计算的消息m_ji(v_i)考虑了其他节点发来的消息,步骤9中计算的节点后验边缘概率分布使用了当前节点及其邻居节点的信息。 以上是高斯信念传播算法的伪码实现,通过该算法可以有效地进行图模型的推理,并得到变量节点的边缘概率分布。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 39
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值