hdu 3864 D_num

原创 2012年03月23日 14:39:45

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3864

题意很简单,就是确定一个数n是不是除了1和它本身,还只有两个不等的因子。解题的思想就是首先用费马小随机测素数算法确定这个数是不是素数,如果不是素数,用pollard随机算法找出它的一个因子p,则另一个因子q为n/p;如果p,q同时为素数,则这个n一定符合要求,否则,假设p<q,如果 p^2 = q,即n为一个素数的三次方,也同样符合要求,从小到大输出p,q,n即可。参考代码如下:

#include<iostream>
#include<cstdio>
#include<cstdlib>
using namespace std;

#define LL __int64

LL multi(LL a,LL b,LL mod)
{
    LL temp = a,sum = 0;
    while(b)
    {
        if(b&1) sum = (sum +  temp) % mod;
        temp = (temp + temp) % mod;
        b = b>>1;
    }
    return sum;
}

LL powerful(LL a,LL x,LL mod)
{
    LL t = a % mod,r = 1;
    while(x)
    {
        if(x & 1) r = multi(r,t,mod);
        t = multi(t,t,mod); x = x>>1;
    }
    return r;
}
bool MR(LL time,LL n)
{
    if(n < 2) return false;
    if(n == 2) return true;
    int num[3] = {2,7,61};
    bool flag = false;
    for(LL k = 0;k < 3;++k)
    {
        if(num[k] == n) return true;
        flag = false;
        LL d = n - 1,r = 0,t,a = rand()%(n-2) + 2;
        while((d & 1) == 0)
        {
            d = d>>1;
            r++;
        }
        t = powerful(a,d,n);
        if(t == 1 || t == n-1) {flag = true;continue;}
        for(LL i = 1;i < r;i++)
        {
            t = multi(t,t,n);
            if(t == 1) {flag = false;return  flag;}
            if(t == n-1) {flag = true;break;}
        }
        if(!flag) break;
    }
    return flag;
}

LL gcd(LL a,LL b) { return !b ? a : gcd(b,a % b); }

LL pollard(LL c,LL n)
{
    LL x = rand() % n;
    LL d,i = 1,k = 2,y = x;
    do{
        i++;
        if((x = multi(x,x,n) - c) < 0) x += n;
        if(x == y) break;
        d = gcd( (y - x + n) % n,n);
        if(d >1 && d < n) return d;
        if(i == k) y = x,k <<= 1;
    }while(true);
    return n;
}
LL Find(LL num)
{
    LL res = 0;
    do{
        res = pollard(rand()%(num-1)+1,num);
    }while(res >= num);
    return  res;
}
int main()
{
    //freopen("1.txt","r",stdin);
    //freopen("5.txt","w",stdout);
    LL n;
    while(~scanf("%I64d",&n))
    {
        bool flag = false;
        if(n == 1 || MR(5,n)) flag = true;
        else 
        {
            LL num1 = Find(n);
            LL num2 = n / num1;
            if(num1 > num2) swap(num1,num2);
            if(MR(5,num1) && MR(5,num2) && num1 != num2 || num1 * num1 == num2)
                printf("%I64d %I64d %I64d\n",num1,num2,n);
            else flag = true;
        }
        if(flag) printf("is not a D_num\n");
    }
    return 0;
}        

HDOJ/HDU 3864 多校联合 D_num 数论

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3864题目:D_numTime Limit: 2000/1000 MS (Java/Others)   ...

HDU 3864 D_num (求因子个数)

题目大意: 给一个数 N(1

HDU, 3864 D_num

题意:输入一个N,假设m和N的最大公约数为m,如果这样的m仅有4个,那么N就是D_num。如果是就输出除1以外的所有m,不是就输出"is not a D_num" 思路:首先1和N自己肯定能作为m了...

[BZOJ 3864][HDU 4899]Hero meet devil(DP套DP)

题目链接:(1)http://www.lydsy.com/JudgeOnline/problem.php?id=3864 (2)http://acm.hdu.edu.cn/showproblem.p...
  • qpswwww
  • qpswwww
  • 2015年02月19日 12:17
  • 1627

HDU 3864 pollard_rho大数质因子分解

题意:给你一个大数n,问有恰好有4个m满足Gcd(N, M) == M,从小到大输出大于1时的M。 这题就是问N是否有4个因子,除去1和N本身有两个因子,将N分解成质因子的形式,可以是一个素数的立方...

hdu 3864 强连通缩点+最小路径覆盖

首先tarjan缩点 一个SCC在一个中,之后求最小路径覆盖 就等于N-SCCcnt-最大匹配 不是很明白为什么。。。缩点后一个DAG。。为什么代码没有转二分图直接求也AC? 代码是照着htt...

LeetCode Num74_Search a 2D Matrix

问题描述:   Write an efficient algorithm that searches for a value in an m x n matrix. This mat...

hdu 4417 划分树加二分 求区间内小于num的数的个数

Super Mario Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) To...

【JSOI2014】【JZOJ 3864】歌剧表演

Description Analysis比赛时我切了233 其实是水题,关键就是模型转化&构造 考虑将认不出来的一撮人的father设成同一个数,及同一个集合 那么构成了森林 对于每一次演出...

ZOJ3864:Quiz for EXO-L(BFS)

Exo (Korean: 엑소; Chinese:爱咳嗽; often stylized as EXO) is a Chinese-South Korean boy band based in Seo...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:hdu 3864 D_num
举报原因:
原因补充:

(最多只允许输入30个字)