关闭

动态规划-背包问题

433人阅读 评论(0) 收藏 举报
分类:

问题描述:the Knapsack Problem

给定n个物品,重量是{w1,...,wn},价值是{v1,...,vn},包的容量(承重)是W

问,放入哪些物品能使得包内价值最大;


思路:运用动态规划思想

1 需要将问题转化为子问题,通过递归实现,且子问题必然与父问题存在关联

2 定义V[i,j] 表示为,当item取自前i个items且背包capacity=j 时,背包问题的最优解,也即最高的价值

3 从前i个items中,选择任意一个组合的情况,可分成两个子集,一种即包含第i个item的集合,一种即不包含第i个item的集合;我们的最优解,即可从这两个子集的最优解中比较而得出;

4  无第i个item的最优解,同时capacity=j,自然是V[i-1,j],根据定义可知并不包含第i个item;

5  包含第i个item的最优解,同时capacity=j ,就是在前 i-1 个items的情况下且capacity=j-wi 的最优解(价值)第i个item(价值),用字母表示为 vi+V[i-1,j-wi]

6  为了使算法更全面,考虑一种情况,j-wi<0 ,下标会越界,

7 考虑初始状况,V[0,j]=0 for j>=0 ,V[i,0]=0 for i>=0







0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:31900次
    • 积分:794
    • 等级:
    • 排名:千里之外
    • 原创:32篇
    • 转载:7篇
    • 译文:9篇
    • 评论:0条