数学之美:sqrt函数的探究

转载 2012年03月22日 14:31:20

http://hi.baidu.com/%D5%D4%B7%F6%B7%E7/blog/item/db585d09f313078bd1581bb3.html


Quake-III Arena (雷神之锤3)是90年代的经典游戏之一。该系列的游戏不但画面和内容不错,而且即使计算机配置低,也能极其流畅地运行。这要归功于它3D引擎的开发者约翰-卡马克(John Carmack)。事实上早在90年代初DOS时代,只要能在PC上搞个小动画都能让人惊叹一番的时候,John Carmack就推出了石破天惊的Castle Wolfstein, 然后再接再励,doom, doomII, Quake...每次都把3-D技术推到极致。他的3D引擎代码资极度高效,几乎是在压榨PC机的每条运算指令。当初MS的Direct3D也得听取他的意见,修改了不少API。

   最近,QUAKE的开发商ID SOFTWARE 遵守GPL协议,公开了QUAKE-III的原代码,让世人有幸目睹Carmack传奇的3D引擎的原码。
   这是QUAKE-III原代码的下载地址:
  http://www.fileshack.com/file.x?fid=7547

(下面是官方的下载网址,搜索 “quake3-1.32b-source.zip” 可以找到一大堆中文网页的
)

   我们知道,越底层的函数,调用越频繁。3D引擎归根到底还是数学运算。那么找到最底层的数学运算函数(在game/code/q_math.c), 必然是精心编写的。里面有很多有趣的函数,很多都令人惊奇,估计我们几年时间都学不完。

在game/code/q_math.c里发现了这样一段代码。它的作用是将一个数开平方并取倒,经测试这段代码比(float)(1.0/sqrt(x))快4倍:

float Q_rsqrt( float number )
{
   long i;
   float x2, y;
   const float threehalfs = 1.5F;

   x2 = number * 0.5F;
   y   = number;
   i   = * ( long * ) &y;   // evil floating point bit level hacking
   i   = 0x5f3759df - ( i >> 1 ); // what the fuck?
   y   = * ( float * ) &i;
   y   = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
   // y   = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed

   #ifndef Q3_VM
   #ifdef __linux__
     assert( !isnan(y) ); // bk010122 - FPE?
   #endif
   #endif
   return y;
}

    函数返回1/sqrt(x),这个函数在图像处理中比sqrt(x)更有用。
    注意到这个函数只用了一次叠代!(其实就是根本没用叠代,直接运算)。编译,实验,这个函数不仅工作的很好,而且比标准的sqrt()函数快4倍!要知道,编译器自带的函数,可是经过严格仔细的汇编优化的啊!
  
   这个简洁的函数,最核心,也是最让人费解的,就是标注了“what the fuck?”的一句
      i   = 0x5f3759df - ( i >> 1 );

再加上y   = y * ( threehalfs - ( x2 * y * y ) );
两句话就完成了开方运算!而且注意到,核心那句是定点移位运算,速度极快!特别在很多没有乘法指令的RISC结构CPU上,这样做是极其高效的。

算法的原理其实不复杂,就是牛顿迭代法,用x-f(x)/f'(x)来不断的逼近f(x)=a的根。

简单来说比如求平方根,f(x)=x^2=a ,f'(x)= 2*x,f(x)/f'(x)=x/2,把f(x)代入

x-f(x)/f'(x)后有(x+a/x)/2,现在我们选a=5,选一个猜测值比如2,
那么我们可以这么算
5/2 = 2.5; (2.5+2)/2 = 2.25; 5/2.25 = xxx; (2.25+xxx)/2 = xxxx ...
这样反复迭代下去,结果必定收敛于sqrt(5),没错,一般的求平方根都是这么算的
但是卡马克(quake3作者)真正牛B的地方是他选择了一个神秘的常数0x5f3759df 来计算那个猜测值
就是我们加注释的那一行,那一行算出的值非常接近1/sqrt(n),这样我们只需要2次牛 顿迭代就可以达到我们所需要的精度.
好吧 如果这个还不算NB,接着看:


普渡大学的数学家Chris Lomont看了以后觉得有趣,决定要研究一下卡马克弄出来的
这个猜测值有什么奥秘。Lomont也是个牛人,在精心研究之后从理论上也推导出一个
最佳猜测值,和卡马克的数字非常接近, 0x5f37642f。卡马克真牛,他是外星人吗?

传奇并没有在这里结束。Lomont计算出结果以后非常满意,于是拿自己计算出的起始
值和卡马克的神秘数字做比赛,看看谁的数字能够更快更精确的求得平方根。结果是
卡马克赢了... 谁也不知道卡马克是怎么找到这个数字的。

最后Lomont怒了,采用暴力方法一个数字一个数字试过来,终于找到一个比卡马克数
字要好上那么一丁点的数字,虽然实际上这两个数字所产生的结果非常近似,这个暴
力得出的数字是0x5f375a86。

Lomont为此写下一篇论文,"Fast Inverse Square Root"。



论文下载地址:
http://www.math.purdue.edu/~clomont/Math/Papers/2003/InvSqrt.pdf
http://www.matrix67.com/data/InvSqrt.pdf

参考:<IEEE Standard 754 for Binary Floating-Point Arithmetic><FAST INVERSE SQUARE ROOT>


最后,给出最精简的1/sqrt()函数:


float InvSqrt(float x)
{
   float xhalf = 0.5f*x;
   int i = *(int*)&x; // get bits for floating VALUE
   i = 0x5f375a86- (i>>1); // gives initial guess y0
   x = *(float*)&i; // convert bits BACK to float
   x = x*(1.5f-xhalf*x*x); // Newton step, repeating increases accuracy
   return x;
}  

大家可以尝试在PC机、51、AVR、430、ARM、上面编译并实验,惊讶一下它的工作效率。


附:牛顿迭代法快速寻找平方根

下面这种方法可以很有效地求出根号a的近似值:首先随便猜一个近似值x,然后不断令x等于x和a/x的平均数,迭代个六七次后x的值就已经相当精确了。
例如,我想求根号2等于多少。假如我猜测的结果为4,虽然错的离谱,但你可以看到使用牛顿迭代法后这个值很快就趋近于根号2了:

( 4 + 2/ 4 ) / 2 = 2.25
( 2.25 + 2/ 2.25 ) / 2 = 1.56944..
( 1.56944..+ 2/1.56944..) / 2 = 1.42189..
( 1.42189..+ 2/1.42189..) / 2 = 1.41423..

....


这种算法的原理很简单,我们仅仅是不断用(x,f(x))的切线来逼近方程x^2-a=0的根。根号a实际上就是x^2-a=0的一个正实根,这个函数的导数是2x。也就是说,函数上任一点(x,f(x))处的切线斜率是2x。那么,x-f(x)/(2x)就是一个比x更接近的近似值。代入 f(x)=x^2-a得到x-(x^2-a)/(2x),也就是(x+a/x)/2。

数学之美读后感

1、自然语言处理研究的"鸟飞派"认为看看鸟怎么飞,就能模仿鸟造出飞机,而不需要了解空气动力学。事实是,怀特兄弟靠的是空气动力学而不是仿生学。 串想: 有那么很少一些的初级投资者们,认为看看巴菲特怎...
  • huaweitman
  • huaweitman
  • 2014年06月23日 10:48
  • 2969

数学之美,美在将复杂问题简化——《数学之美》读后感

我是在读了吴军博士的《浪潮之巅》之后,发现推荐了《数学之美》这本书。我到豆瓣读书上看了看评价,就果断在当当上下单买了一本研读。本来我以为这是一本充满各种数学专业术语的书,读后让我非常震撼的是吴军博士居...
  • kbawyg
  • kbawyg
  • 2012年09月29日 14:34
  • 6952

数学之美--深入理解矩阵

理解矩阵一: 转载自:http://blog.csdn.net/myan/article/details/647511 前不久chensh出于不可告人的目的,要充当老师,教别人线性代数。于是我被揪...
  • LCMliao
  • LCMliao
  • 2013年12月30日 10:50
  • 1537

数学之美读书笔记

第一章:文字和语言vs数字和信息     1. 文字是信息的载体。信息传播的基本模式:             源信息 -> 编码 -> 信道传输 -> 接收者解码 -> 还原信息     2....
  • mlzhu007
  • mlzhu007
  • 2014年07月10日 19:04
  • 1686

《数学之美》--吴军 读后感

拿到《数学之美》这本书,真是爱不释手,也给好多朋友推荐看 其中的数学部分真的太巧妙了,”数学是科学的皇后“ ,真是太美妙了 不管是概率论,线性代数,还是离散,亦或是统计学 真切的不像以前那么想起...
  • huaxixidongbeishida
  • huaxixidongbeishida
  • 2016年03月24日 20:33
  • 922

数学之美——信息的度量

信息有大小吗,如何度量信息的大小?如何度量信息之间的关系? 今天主要讨论的几个问题,它是 信息论 的基础,相信看完这篇文章你会感觉:其实每门学科都有它的神奇之处:) 信息熵在日常生活中,我们应该遇到过...
  • wwh578867817
  • wwh578867817
  • 2016年01月06日 01:46
  • 1291

数学之美 第3章 统计语言模型

数学之美 第3章 统计语言模型 回顾一下: 前面两章都是基础知识,告诉我们自然语言的起源基础,和一些发展过程遇到的问题,第二章告诉我们规则:理解自然语言(即分析语句和获取语义)这种处理方法不可能实...
  • lch614730
  • lch614730
  • 2014年03月18日 21:41
  • 1240

读书笔记 --《数学之美》_ 中文分词

《数学之美⋅\cdot第二版》第四章 现在中文分词是一个已经解决的问题,提升的空间微乎其微。不值得再去花很大的精力去做研究 1、中文分词方法的演变 (a.)北航的梁南元教授提出的查字典类似的方法...
  • redaihanyu
  • redaihanyu
  • 2015年12月22日 20:26
  • 800

数学之美(吴军著)学习总结和经典摘抄

翻译这件事之所以能达成,仅仅是因为不同的文字系统在记录信息的能力上是等价的。(这个结论很重要)进一步讲,文字只是信息的载体,而并非信息本身。...
  • sxh850297968
  • sxh850297968
  • 2014年11月09日 22:48
  • 1460

《数学之美》PDF

下载地址:网盘下载 内容简介 编辑 几年前,“数学之美”系列文章原刊载于谷歌黑板报,获得上百万次点击,得到读者高度评价。读者说,读了“数学之美”,才发现大学时学的...
  • cf406061841
  • cf406061841
  • 2017年05月27日 19:01
  • 465
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:数学之美:sqrt函数的探究
举报原因:
原因补充:

(最多只允许输入30个字)