序关系计数问题
问题描述:
用关系“<”和“=”将3 个数A、B和C依序排列时有13 种不同的序关系:
A=B=C,A=B<C,A<B=C,A<B<C,A<C<B,A=C<B,B<A=C,B<A<C,B<C<A,
B=C<A,C<A=B,C<A<B,C<B<A。
将n 个数(1 <= n <=50)依序排列时有多少种序关系。
设n个数可列出的关系式的个数为g(n), 下面我们设法总结规律找出g(n)的递推关系:
对于一个关系式@
a1@a2@a3....@an
其中@表示 < 或 =,总存在一个k, 使a1, a2, ...ak,之间均用"="连接,即
a1=a2=a3...=ak<ak+1@...@an
根据组合定义,从n个对象中选出k个组成关系式 a1=a2=a3...=ak,相当于在n个数中
选取k个组合,因此关系式a1=a2=...=ak 的可能组合形式有C(n,k), 而ak+1@...@an
的可能形式有g(n-k)种, 因此得出g(n)的递推公式为
g(n)=∑C(n,k)*g(n-k) k from 1 to n
g(0)=1
计算C(n,k)可用两重循环加组合的基本公式:C(n,k)=C(n-1,k-1)+C(n-1,k)
算法在初始化部分计算出C(n,k),存放在表中。
参考算法:
int
Orderings(n)
...
{
for i=1 to n

本文探讨了序关系计数问题,即如何计算n个数按照'<'和'='关系排列的不同序关系数量。通过递推公式g(n)=∑C(n,k)*g(n-k) (k从1到n),并初始化C(n,k)表格,可以得出解决方案。然而,原始算法具有O(N^2)的空间复杂度。为了优化,提出了一种新算法,仅需保存第i-1行数据,将空间复杂度降低到O(n),同时保持O(n^2)的计算时间。"
104587698,9100893,C++中的静态成员与静态成员函数详解,"['C++', '面向对象', '编程概念']
最低0.47元/天 解锁文章
776





