数的划分

本文介绍了一种解决整数n分成k份不同分法数量问题的算法,通过将问题转化为求解新模型中n'的任意划分问题,并给出递推公式及参考程序。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题描述

将整数n分成k份,且每份不能为空,任意两种分法不能相同(不考虑顺序)。
例如:n=7,k=3,下面三种分法被认为是相同的:
1,1,5; 1,5,1; 5,1,1。
问有多少种不同的分法。
输入:n,k(6<n<=200,2<=k<=6)
输出:一个整数,即不同的分法。

输入输出样例

输入:
7 3
输出:
4

问题分析:

这是一道整数剖分的问题。这类问题的数学性很强,方法也很多。

首先,正确理解“整数n分成k份,这k个整数不考虑顺序的含义”指的是同一种划分与k个整数的排列无关,例如下面584划分看作是同一种划分法:

12232231 13223212 2213

因此将n划分份的一种方法唯一的表示为n1+n2+……nk,其中n1<=n2<=….nk.

       这样可以形象地把nk份划分看作是把n块积木堆成k列,且每列的积木块数依次递增,也就是这n块积木从左到右被堆成了“阶梯状”。比如,下图是10的几种划分方法:

                

              

把上图的三个矩形顺时针旋转90度后,如下图:

  

不难发现,选转之后的模型还是10的划分,不过约束条件有所不同。很明显,由于原来是k份划分,因此新的模型中的最大一个元素必然是k。而其余的元素大小不限,但都不能大于k.  n减去k后,n’=n-k, 剩下的问题就是求n’的任意划分,且其中每个元素都不大于k的方案总数了。

       新模型中,nk份剖分的一种分法表示为n块积木从右到左递增排列,其中最左列有k块积木。

       两个模型中对nk份剖分的每种分法表示是一一对应的,如:

101225      对应    1043111

       101135      对应    1042211

       101234      对应    104321

       因此,求nk份划分的方案总数问题转化为根据新模型将n做任意划分,且其中最大的一个部分恰好是k的问题。

       求解这个新的模型可以用递推的方法,用f (a,b)表示把b做任意份剖分,其中最大的一个部分等于a方案总数,用g(a,b)表示把b做任意份划分,其中最大的一个部分不大于a的方案总数,则有:

       f (a,b)=g (a,b-a);

       g(a,b)=f(1,b)+f(2,b)+...f(a,b);

因为:

f(1,b)+f(2,b)+...f(a,b) =f(1,b)+...f(i,b)  +f(a,b) (1<=i<=a-1)

 

f(1,b)+f(2,b)+..f(a-1,b) =g(a-1,b)

所以:

g(a,b)=f(1,b)+...f(i,b)f(a,b)=g(a-1,b)+g(a,b-a)(1<=i<=a-1)

b<a时,根据g(a,b)的含义,g(a,b-a)无意义。

a=1时,显然 g(1,b)=1.

于是,根据新模型求解得到下列递推公式:

  g (a,b)=   g (a-1,b b<a

            g (a-1,b)+g(a,b-a) b>=a.

g(1,b)=1.

最后的g (k,n-k)即为所求。

参考程序:

#include<iostream>
#include<cstring>
using namespace std;
int g[7][201];
int main()
 {   freopen("in.txt","r",stdin);
     freopen("out.txt","w",stdout);
     int n,k,i,j;
     while(cin>>n>>k)
      {
          memset(g,0,sizeof(g));
          for(j=0;j<=n;j++)
           g[1][j]=1;
          for(i=2;i<=k;i++)
           for(j=0;j<=n-k;j++)
            if(j>=i)
              g[i][j]=g[i-1][j]+g[i][j-i];
            else
              g[i][j]=g[i-1][j];
       cout<<g[k][n-k]<<endl;        
      }   
    
     return 0;
 }   

### 动态范围档划分的概念与实现 动态范围档划分是一种用于分类和分层的技术,通常应用于据管理和分析领域。其核心目的是根据特定的标准或规则将划分为不同的等级或类别,以便更好地进行管理和利用。 #### 1. **概念定义** 动态范围档划分是指依据一定的标准或条件,对某一范围内对象的据特性进行量化并分配到不同档次的过程。这一过程可以基于多种因素完成,例如值大小、频率分布或其他特征参[^1]。它强调灵活性和适应性,在实际操作中可以根据具体场景调整划分策略。 #### 2. **实现方法** ##### (1)分级原则 在实施动态范围档划分前,需明确分级的原则。这包括但不限于以下几个方面: - 据的重要性及其潜在影响; - 是否涉及敏感信息(如个人隐私或商业机密); - 不同级别下据遭受破坏时可能带来的后果严重程度[^3]。 ##### (2)确定边界值 为了有效执行档划分,必须先设定清晰的界限值作为区分各档位的基础。这些阈值可以通过统计学手段得出,也可以依赖专家经验制定。例如,在某些应用场景里,采用百分位法来决定上下限是一个常见做法: ```python import numpy as np def calculate_percentiles(data, lower=0.1, upper=0.9): """ 计算给定据集中的指定百分位 """ low_val = np.percentile(data, lower * 100) high_val = np.percentile(data, upper * 100) return low_val, high_val data_points = [random.randint(1, 100) for _ in range(100)] low, high = calculate_percentiles(data_points) print(f"Lower boundary: {low}, Upper Boundary: {high}") ``` 此代码片段展示了如何利用Python库`numpy`计算一组随机整样本的低高两个百分位点位置,从而帮助确立合理的区间端点[^2]。 ##### (3)应用函映射 一旦明确了各个层次间的转换关系,则可通过建立相应的学模型来进行精确描述。假设我们希望衡量某个营销活动效果Y受到多个变量X共同作用的结果,此时便能借助回归方程等形式表达这种关联性: \[ Y=f(X_1,X_2,...,X_n)=\beta_0+\sum_{i=1}^{n}\beta_i*X_i \] 其中\( X_i\)代表各自独立的影响因子,而系项则反映了它们相对重要性的权重比例[^2]。 #### 3. **案例说明** 考虑到实际情况复杂多样,下面给出一个简单实例加以阐释:假设有家电商企业想要对其库存商品按销售热度重新整理陈列顺序。他们可以选择按照过去一年内的销量记录分成若干组别——畅销品、平销品以及滞销品三类,并据此安排货架布局优化顾客购物体验的同时提高整体营业额水平。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值