老规矩先说题意
问题描述
栋栋最近开了一家餐饮连锁店,提供外卖服务。随着连锁店越来越多,怎么合理的给客户送餐成为了一个急需解决的问题。
栋栋的连锁店所在的区域可以看成是一个n×n的方格图(如下图所示),方格的格点上的位置上可能包含栋栋的分店(绿色标注)或者客户(蓝色标注),有一些格点是不能经过的(红色标注)。
方格图中的线表示可以行走的道路,相邻两个格点的距离为1。栋栋要送餐必须走可以行走的道路,而且不能经过红色标注的点。
送餐的主要成本体现在路上所花的时间,每一份餐每走一个单位的距离需要花费1块钱。每个客户的需求都可以由栋栋的任意分店配送,每个分店没有配送总量的限制。
现在你得到了栋栋的客户的需求,请问在最优的送餐方式下,送这些餐需要花费多大的成本。
栋栋的连锁店所在的区域可以看成是一个n×n的方格图(如下图所示),方格的格点上的位置上可能包含栋栋的分店(绿色标注)或者客户(蓝色标注),有一些格点是不能经过的(红色标注)。
方格图中的线表示可以行走的道路,相邻两个格点的距离为1。栋栋要送餐必须走可以行走的道路,而且不能经过红色标注的点。
送餐的主要成本体现在路上所花的时间,每一份餐每走一个单位的距离需要花费1块钱。每个客户的需求都可以由栋栋的任意分店配送,每个分店没有配送总量的限制。
现在你得到了栋栋的客户的需求,请问在最优的送餐方式下,送这些餐需要花费多大的成本。
输入格式
输入的第一行包含四个整数n, m, k, d,分别表示方格图的大小、栋栋的分店数量、客户的数量,以及不能经过的点的数量。
接下来m行,每行两个整数xi, yi,表示栋栋的一个分店在方格图中的横坐标和纵坐标。
接下来k行,每行三个整数xi, yi, ci,分别表示每个客户在方格图中的横坐标、纵坐标和订餐的量。(注意,可能有多个客户在方格图中的同一个位置)
接下来d行,每行两个整数,分别表示每个不能经过的点的横坐标和纵坐标。
接下来m行,每行两个整数xi, yi,表示栋栋的一个分店在方格图中的横坐标和纵坐标。
接下来k行,每行三个整数xi, yi, ci,分别表示每个客户在方格图中的横坐标、纵坐标和订餐的量。(注意,可能有多个客户在方格图中的同一个位置)
接下来d行,每行两个整数,分别表示每个不能经过的点的横坐标和纵坐标。
输出格式
输出一个整数,表示最优送餐方式下所需要花费的成本。
样例输入
10 2 3 3
1 1
8 8
1 5 1
2 3 3
6 7 2
1 2
2 2
6 8
1 1
8 8
1 5 1
2 3 3
6 7 2
1 2
2 2
6 8
样例输出
29
评测用例规模与约定
前30%的评测用例满足:1<=n <=20。
前60%的评测用例满足:1<=n<=100。
所有评测用例都满足:1<=n<=1000,1<=m, k, d<=n^2。可能有多个客户在同一个格点上。每个客户的订餐量不超过1000,每个客户所需要的餐都能被送到。
前60%的评测用例满足:1<=n<=100。
所有评测用例都满足:1<=n<=1000,1<=m, k, d<=n^2。可能有多个客户在同一个格点上。每个客户的订餐量不超过1000,每个客户所需要的餐都能被送到。
#include<iostream>
#include<queue>
#define N 1001
using namespace std;
typedef struct Node {
char type;//点的类型 ,1是店家,2是顾客,0是普通点,-1是不能走的点
int x,y;//点的坐标
int needs;
int value;
} Node;
//用来统一改变x,y的坐标
char d_x[4]={-1,1,0,0};
char d_y[4]={0,0,-1,1};
queue<Node> q;
Node arcs[N][N];
bool vis[N][N];
int n;
bool isTure(int x,int y){
if(x>n || y>n || x<1 || y<1) return 0;
if(arcs[x][y].type==-1) return 0;
if(vis[x][y]) return 0;
return 1;
}
int main() {
int m=0,k=0,d=0;
long long int ans=0;
cin>>n;
cin>>m>>k>>d;
//输入m个分店
while(m--) {
int x,y;
cin>>x>>y;
arcs[x][y].x=x;
arcs[x][y].y=y;
arcs[x][y].type=1;
q.push(arcs[x][y]);
vis[x][y]=1;
}
//k个客户
while(k--) {
int x,y,needs;
cin>>x>>y>>needs;
arcs[x][y].x=x;
arcs[x][y].y=y;
arcs[x][y].type=2;
//这里注意要+=因为顾客坐标可能重复
arcs[x][y].needs+=needs;
}
//d个不能走的地方
while(d--) {
int x,y;
cin>>x>>y;
arcs[x][y].x=x;
arcs[x][y].y=y;
arcs[x][y].type=-1;
}
//将空格点赋值x,y(很耗时的感觉)
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
if(arcs[i][j].type==0){
arcs[i][j].x=i;
arcs[i][j].y=j;
}
//从每个店开始BFS,碰到顾客就卸货,反正是每个店的范围同步增长
while(!q.empty()){
Node temp;
temp=q.front();
q.pop();
//i为0,1,2,3时分别表示该点的上下左右坐标
for(int i=0;i<4;i++){
int tp_x=temp.x+d_x[i],tp_y=temp.y+d_y[i];
if(!isTure(tp_x,tp_y)) continue;
//value的值就是用来记录从卖家开始走了多少步
arcs[tp_x][tp_y].value=arcs[temp.x][temp.y].value+1;
//遇到顾客就将顾客的需求和走的步数相乘
if(arcs[tp_x][tp_y].type==2)
ans+=arcs[tp_x][tp_y].needs*arcs[tp_x][tp_y].value;
q.push(arcs[tp_x][tp_y]);
vis[tp_x][tp_y]=1;
}
}
cout<<ans;
return 0;
}