Uva11300 - Spreading the Wealth

原创 2015年07月09日 10:09:39

 F. Spreading the Wealth 

Problem

A Communist regime is trying to redistribute wealth in a village. They have have decided to sit everyone around a circular table. First, everyone has converted all of their properties to coins of equal value, such that the total number of coins is divisible by the number of people in the village. Finally, each person gives a number of coins to the person on his right and a number coins to the person on his left, such that in the end, everyone has the same number of coins. Given the number of coins of each person, compute the minimum number of coins that must be transferred using this method so that everyone has the same number of coins.

The Input

There is a number of inputs. Each input begins with n(n<1000001), the number of people in the village. nlines follow, giving the number of coins of each person in the village, in counterclockwise order around the table. The total number of coins will fit inside an unsigned 64 bit integer.

The Output

For each input, output the minimum number of coins that must be transferred on a single line.

Sample Input

3
100
100
100
4
1
2
5
4

Sample Output

0
4

看到第六面例题三理解了很久,书上的问题从前n-1个方程可以推导出最后一个方程,应该可以从这两方面理解:1,直接推出来。An-1 - Xn-1 + Xn = M ==> Xn = M - An-1 +Xn-1
An - Xn + x1 = An - M + An-1 - Xn-1 + x1
=An+An-1 - M - Xn-1 + x1
同理最后得到:An+An-1+...+A1 - (n-1)*M - X1 + X1 = M
2,通过理解,因为移动之后是前面n-1人满足每个人拿到M金币的,共(n-1)*M币,所以最后一个人理所当然剩余M了.
我们希望移动最少金币也就是说|X1| + |X2| +...+|Xn|最小,而Xn = X1 - Cn-1;
所以就是|X1| + |X1-C1| +...+|X1 - Cn-1|取最小。变成了“中位数”的问题
因为这里是实际情况只能在人选取中位数x1 = C[n/2](偶数点靠右) 或者 x1 = C[(n-1)/2] (偶数点靠左)都是可以的。

看到第六面例题三理解了很久,书上的问题从前n-1个方程可以推导出最后一个方程,应该可以从这两方面理解:1,直接推出来。An-1 - Xn-1 + Xn = M ==> Xn = M - An-1 +Xn-1
An - Xn + x1 = An - M + An-1 - Xn-1 + x1
                    =An+An-1 - M - Xn-1 + x1
同理最后得到:An+An-1+...+A1 - (n-1)*M - X1 + X1 = M
2,通过理解,因为移动之后是前面n-1人满足每个人拿到M金币的,共(n-1)*M币,所以最后一个人理所当然剩余M了.
我们希望移动最少金币也就是说|X1| + |X2| +...+|Xn|最小,而Xn = X1 - Cn-1;
所以就是|X1| + |X1-C1| +...+|X1 - Cn-1|取最小。变成了“中位数”的问题
因为这里是实际情况只能在人选取中位数x1 = C[n/2](偶数点靠右) 或者 x1 = C[(n-1)/2] (偶数点靠左)都是可以的。
看到第六面例题三理解了很久,书上的问题从前n-1个方程可以推导出最后一个方程,应该可以从这两方面理解:1,直接推出来。An-1 - Xn-1 + Xn = M ==> Xn = M - An-1 +Xn-1
An - Xn + x1 = An - M + An-1 - Xn-1 + x1
                    =An+An-1 - M - Xn-1 + x1
同理最后得到:An+An-1+...+A1 - (n-1)*M - X1 + X1 = M
2,通过理解,因为移动之后是前面n-1人满足每个人拿到M金币的,共(n-1)*M币,所以最后一个人理所当然剩余M了.
我们希望移动最少金币也就是说|X1| + |X2| +...+|Xn|最小,而Xn = X1 - Cn-1;
所以就是|X1| + |X1-C1| +...+|X1 - Cn-1|取最小。变成了“中位数”的问题
因为这里是实际情况只能在人选取中位数x1 = C[n/2](偶数点靠右) 或者 x1 = C[(n-1)/2] (偶数点靠左)都是可以的。

#include <iostream>
#include <stdio.h>
#include <algorithm>
using namespace std;
const int MAXN = 1000010;
int n;
long long  C[MAXN], avg;
int main()
{
    int i;
    while(scanf("%d",&n)!=EOF)
    {
        avg = 0;
        for(i=1; i<=n; i++)
        {  
                 scanf("%lld",&C[i]);
                 avg+=C[i];
        }
        C[0] = 0;
        avg/=n;
        for(i=1; i<n; i++)
        {
                 C[i] = C[i-1] + C[i] - avg;
        }
        sort(C,C+n);
        long long ans = 0, x1 = C[(n-1)/2];
        for(i=0; i<n; i++)
        {
                 ans += abs(C[i] - x1);
        }
        printf("%lld\n", ans);
    }
    return 0;
}


 

版权声明:本文为博主原创文章,未经博主允许不得转载。

UVA 11300 Spreading the Wealth(技巧:中位数 推公式)

题目链接Spreading the Wealth A Communist regime is trying to redistribute wealth in a village. They hav...
  • qingshui23
  • qingshui23
  • 2016年05月03日 11:10
  • 2510

scikit-learn(工程中用的相对较多的模型介绍):1.14. Semi-Supervised

参考:http://scikit-learn.org/stable/modules/label_propagation.html The semi-supervised estimators ...
  • mmc2015
  • mmc2015
  • 2015年08月07日 09:09
  • 2078

如何创造财富——How to Make Wealth

Paul Graham在《黑客与画家》这本书中也放进了这篇文章,在他的博客上可以看到英文原版内容。阐述了如何通过创业的过程,创造财富,让你实现财务自由和生活自由。“How to Make Wealth...
  • www19940501a
  • www19940501a
  • 2014年03月25日 19:41
  • 1360

Spreading the Wealth UVa-11300

题目传送门题意:这个题题目的意思十分的简单,就是有n个人围成一圈坐下,每个人一开始都有一定数量的金币,每个人的金币只能给自己身边的两个人,问最少要交换多少次金币才能让每一个人手中的金币数量相等。思路:...
  • GoneWithTheWind_yin
  • GoneWithTheWind_yin
  • 2017年06月27日 20:56
  • 191

Uva 11300 - Spreading the Wealth(中位数距离)

题目链接: http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=25&page=show_pro...
  • a1006570862
  • a1006570862
  • 2013年11月21日 15:30
  • 1165

Uva 11300 Spreading the Wealth(数学,中位数)

F. Spreading the Wealth  Problem A Communist regime is trying to redistribute wealth i...
  • kbdwo
  • kbdwo
  • 2014年07月13日 11:25
  • 616

uva11300 Spreading the Wealth

数学推导
  • sdfzyhx
  • sdfzyhx
  • 2016年11月07日 15:31
  • 86

中位数-分金币(Spreading the Wealth, UVa 11300)

分金币(Spreading the Wealth, UVa 11300)圆桌旁坐着n个人,每人有一定数量的金币,金币总数能被n整除。每个人可以给他左右相邻的人一些金币,最终使得每个人的金币数目相等。你...
  • Double2hao
  • Double2hao
  • 2016年06月14日 15:21
  • 775

UVa 11300 Spreading the Wealth (使用方程进行等价转化&快速选择优化)

11300 - Spreading the Wealth Time limit: 6.000 seconds http://uva.onlinejudge.org/index.php?option=c...
  • synapse7
  • synapse7
  • 2013年09月01日 14:38
  • 749

uva 11300 Spreading the Wealth

这道题目需要一些代数推导,解法比较精妙 推导过程: 假设人从1开始到n编号,Ai表示初始时刻每个人手里面的金币数量,M表示金币的平均数,xi表示从i号位置拿出xi个金币给i-1号位置,这个值有正有负,...
  • xiaohaowudi
  • xiaohaowudi
  • 2013年09月15日 14:02
  • 422
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Uva11300 - Spreading the Wealth
举报原因:
原因补充:

(最多只允许输入30个字)