关闭

Uva11300 - Spreading the Wealth

118人阅读 评论(0) 收藏 举报
分类:

 F. Spreading the Wealth 

Problem

A Communist regime is trying to redistribute wealth in a village. They have have decided to sit everyone around a circular table. First, everyone has converted all of their properties to coins of equal value, such that the total number of coins is divisible by the number of people in the village. Finally, each person gives a number of coins to the person on his right and a number coins to the person on his left, such that in the end, everyone has the same number of coins. Given the number of coins of each person, compute the minimum number of coins that must be transferred using this method so that everyone has the same number of coins.

The Input

There is a number of inputs. Each input begins with n(n<1000001), the number of people in the village. nlines follow, giving the number of coins of each person in the village, in counterclockwise order around the table. The total number of coins will fit inside an unsigned 64 bit integer.

The Output

For each input, output the minimum number of coins that must be transferred on a single line.

Sample Input

3
100
100
100
4
1
2
5
4

Sample Output

0
4

看到第六面例题三理解了很久,书上的问题从前n-1个方程可以推导出最后一个方程,应该可以从这两方面理解:1,直接推出来。An-1 - Xn-1 + Xn = M ==> Xn = M - An-1 +Xn-1
An - Xn + x1 = An - M + An-1 - Xn-1 + x1
=An+An-1 - M - Xn-1 + x1
同理最后得到:An+An-1+...+A1 - (n-1)*M - X1 + X1 = M
2,通过理解,因为移动之后是前面n-1人满足每个人拿到M金币的,共(n-1)*M币,所以最后一个人理所当然剩余M了.
我们希望移动最少金币也就是说|X1| + |X2| +...+|Xn|最小,而Xn = X1 - Cn-1;
所以就是|X1| + |X1-C1| +...+|X1 - Cn-1|取最小。变成了“中位数”的问题
因为这里是实际情况只能在人选取中位数x1 = C[n/2](偶数点靠右) 或者 x1 = C[(n-1)/2] (偶数点靠左)都是可以的。

看到第六面例题三理解了很久,书上的问题从前n-1个方程可以推导出最后一个方程,应该可以从这两方面理解:1,直接推出来。An-1 - Xn-1 + Xn = M ==> Xn = M - An-1 +Xn-1
An - Xn + x1 = An - M + An-1 - Xn-1 + x1
                    =An+An-1 - M - Xn-1 + x1
同理最后得到:An+An-1+...+A1 - (n-1)*M - X1 + X1 = M
2,通过理解,因为移动之后是前面n-1人满足每个人拿到M金币的,共(n-1)*M币,所以最后一个人理所当然剩余M了.
我们希望移动最少金币也就是说|X1| + |X2| +...+|Xn|最小,而Xn = X1 - Cn-1;
所以就是|X1| + |X1-C1| +...+|X1 - Cn-1|取最小。变成了“中位数”的问题
因为这里是实际情况只能在人选取中位数x1 = C[n/2](偶数点靠右) 或者 x1 = C[(n-1)/2] (偶数点靠左)都是可以的。
看到第六面例题三理解了很久,书上的问题从前n-1个方程可以推导出最后一个方程,应该可以从这两方面理解:1,直接推出来。An-1 - Xn-1 + Xn = M ==> Xn = M - An-1 +Xn-1
An - Xn + x1 = An - M + An-1 - Xn-1 + x1
                    =An+An-1 - M - Xn-1 + x1
同理最后得到:An+An-1+...+A1 - (n-1)*M - X1 + X1 = M
2,通过理解,因为移动之后是前面n-1人满足每个人拿到M金币的,共(n-1)*M币,所以最后一个人理所当然剩余M了.
我们希望移动最少金币也就是说|X1| + |X2| +...+|Xn|最小,而Xn = X1 - Cn-1;
所以就是|X1| + |X1-C1| +...+|X1 - Cn-1|取最小。变成了“中位数”的问题
因为这里是实际情况只能在人选取中位数x1 = C[n/2](偶数点靠右) 或者 x1 = C[(n-1)/2] (偶数点靠左)都是可以的。

#include <iostream>
#include <stdio.h>
#include <algorithm>
using namespace std;
const int MAXN = 1000010;
int n;
long long  C[MAXN], avg;
int main()
{
    int i;
    while(scanf("%d",&n)!=EOF)
    {
        avg = 0;
        for(i=1; i<=n; i++)
        {  
                 scanf("%lld",&C[i]);
                 avg+=C[i];
        }
        C[0] = 0;
        avg/=n;
        for(i=1; i<n; i++)
        {
                 C[i] = C[i-1] + C[i] - avg;
        }
        sort(C,C+n);
        long long ans = 0, x1 = C[(n-1)/2];
        for(i=0; i<n; i++)
        {
                 ans += abs(C[i] - x1);
        }
        printf("%lld\n", ans);
    }
    return 0;
}


 

0
0

猜你在找
【直播】机器学习&数据挖掘7周实训--韦玮
【套餐】系统集成项目管理工程师顺利通关--徐朋
【直播】3小时掌握Docker最佳实战-徐西宁
【套餐】机器学习系列套餐(算法+实战)--唐宇迪
【直播】计算机视觉原理及实战--屈教授
【套餐】微信订阅号+服务号Java版 v2.0--翟东平
【直播】机器学习之矩阵--黄博士
【套餐】微信订阅号+服务号Java版 v2.0--翟东平
【直播】机器学习之凸优化--马博士
【套餐】Javascript 设计模式实战--曾亮
查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:24656次
    • 积分:950
    • 等级:
    • 排名:千里之外
    • 原创:76篇
    • 转载:0篇
    • 译文:0篇
    • 评论:0条