VisionMobile:2014年Q3移动开发者经济报告(二):1、平台之争走向本地

文章转载只能用于非商业性质,且不能带有虚拟货币、积分、注册等附加条件。转载须注明出处http://blog.csdn.net/flowingflying以及译者@恺风Wei

2014年7月,visionMobile发表了最新一期的移动开发者经济报告 

Android和iOS双雄依旧牢牢地掌控了开发者和消费者的注意力。然而平台之战并未结束。

在全球范围上,微软仍在努力建立可维持的第三方生态系统,并在开发者方面取得某些进展,如今有28%的开发者采用微软平台,尽管微软未能获得显著的设备市场份额。移动计算市场比以往任何时候都大得多,即使市场很小的份额都是那些具有全球野心的开发者无法忽视的安装基数。使用广告支撑的商务模式以最大化覆盖为目的应用,或者依赖网络效益的社交应用,任何具备千万级用户潜力的平台都是目标平台。于此同时,这些全球应用如今正是新平台的全部赌注。例如,一个没有WhatsApp或者Instagram的平台在很多国家将难以被接纳。

开发者关注集中

所有要挑战双寡头的平台问题出现在区域或本地范围。这也是Android和iOS持续争斗的层面。随着全球应用支持所有平台,最大的差异化来自小众和本地应用。为了与同行竞争,这些规模较小的开发者越来越倾向选择更少的平台。

开发者平均目标平台数从一年前的2.9不断下降,在Q1的报告为2.5,本次调查为2.2。如果去除游戏开发者,目标平台平均数仅为1.75,其中有43%的开发者只针对1个平台。iOS的开发者青睐度在过去6个月有轻微下跌,但iOS作为首选平台并没有减少,而是同时选择Android和iOS的开发者少了。大多数的本地市场开发者的青睐度与平台的市场份额相关,且与高端用户份额不成比例地偏好iOS。最新官方数据显示,就应用商店收入而言,一个iOS用户相当4个Android用户。东欧和前独联体是个有趣的例外,Android占本地设备绝大部分销售,然而38%的开发者更喜欢iOS,将他们的应用出口到富裕的西方市场。俄罗斯的猎人(寻求来自应用经济的直接收入)尤为高度集中,结合优秀技能和更低生活成本,在应用商店中竞争直接收入。开发者如今只专注他们地区的top1或者top2平台,在这样的世界,挑战平台没有什么机会来提升其市场份额。

Windows Phone苦苦支撑,黑莓10看来吸引力减弱

黑莓10受到最大的打击,他们尝试销售溢价设备,却没能提供大量有价值的本地内容和服务。由于没有显著的市场销售,开发者青睐度已经跌到仅有11%。他们如今决定通过Amazon的应用商店销售设备,将焦点从开发者推广至企业和物联网。

相反,微软已经在低端设备中获得某些吸引力,面向首次智能手机购买者提供可信品牌设备,和同价位的Android设备相比具有卓越的整体体验。这个低端设备策略的问题在于这些用户不愿花钱在APP上,品牌广告对他们缺乏吸引力,这使他们难以吸引开发者。随着Google发起Android One倡议,在新兴市场提供低于$100的具有Android体验品质的手机,微软的Winsow的机会可能会被终结。他们在对抗强大的网络效益,只通过金钱并不能在竞争中取胜。

HTML5的开发者正在抛弃浏览器

对Web技术在开发者青睐争夺,这是非常糟糕的一年。在上一次调查(2014年Q1)中,我们询问开发者针对目标移动设备是否将HTML5作为平台。我们同样调查他们如何使用HTML5技术:37%的HTML5用来构建网站或者web应用,另外15%用来构建混合应用或者通过诸如Appcelerator Titanium工具用JavaScript来构建原生应用。由于HTML5是一组技术,而浏览器是发布平台,这次我们询问开发者他们是否将目标移动浏览器作为平台。我们还调查了开发者使用的编程语言。结果是只有15%的开发者针对移动浏览器,总共有42%使用了HTML、CSS和JS。结果很清楚,使用了web技术的大部分开发者并没有以移动浏览器为目标。尽管仍有不少混合应用开发者,但移动设备上使用HTML5开发者的整体比例在下降,包括那些转化为原生代码的和新近采用原生平台的。

 

相关链接:我的产业生态链和杂谈文章

内容概要:本文系统介绍了基于因果推断的智能经营模型体系,重点阐述了从传统信贷经营v1.0时代向智能信贷v2.0时代的演进。传统体系受限于人工策略、目标分散和效率低下,而v2.0体系以客户长期生命价值(LTV)为统一优化目标,依托高维特征自动化处理和因果推断技术,实现经营决策的精准化与自动化迭代。文章深入剖析了相关关系与因果关系的区别,指出传统机器学习在决策场景中的局限性,并引入因果推断解决反事实预估问题。通过自研Mono-CFR等算法,构建额度、价格、还款方式、权益等多维度因果模型,实现个体层面的决策效果预估,在控制风险的前提下提升人均盈利与放款规模。未来方向聚焦技术迭代与多经营手段的动态联合优化。; 适合人群:具备一定机器学习基础,从事金融科技、信贷产品、数据科学等相关领域的研发与策略人员,尤其是关注智能决策与因果推断应用的从业者;; 使用场景及目标:①解决信贷经营中“额度越高风险越低”等违反直觉的数据悖论;②实现个体维度的精准定价、定额与权益发放;③量化经营动作的增量效果,优化客户全生命周期价值(LTV);④推动从单点优化到多干预联合决策的智能化升级; 阅读建议:此资源强调因果推断在实际业务中的建模与落地,建议结合文中提到的额度、价格、权益等案例,深入理解反事实推理、混淆因子处理与多任务因果模型的设计思路,并关注其在A/B实验不足场景下的优势。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值