【Developer Log】Java VM的不明机制

本文通过一个简单的Java程序探究了Java 7的PermGen和Java 8的MetaSpace内存增长现象。实验发现即使在没有新对象创建的情况下,PermGen和MetaSpace依然存在轻微的增长趋势。通过对测试结果的分析,探讨了虚拟机处理机制对内存分配的影响。

在之前的【Developer Log】Java的内存使用、垃圾回收和内存泄漏中,我们通过长时间的大压测试探究了VM的GC机制,重点观察了Old Gen。然而在长时间的测试中,我们发现在jdk8的MetaSpace,或者在jdk7的Perm Gen中观察到随着时间有增长,虽然增长量很少很少,但是的确在增长。

这是个很头疼的问题,所以觉得另外写个小程序确认一下。程序很简单:

public class Main {
    private static void permTest(String[] args){
        Utils.showInfo("Try to explore Perm Gen or MetaSpace");  //就是在Console上打出一行字。
        while(true){ 
            try{
                //Thread.sleep(100);     //TEST1采用了100ms的步进方式
                Thread.sleep(100000);   //TEST2采用了100s的步进方式
            }catch(Exception e){
                e.printStackTrace();
            }
        }
    }

    public static void main(String[] args) { 
        permTest(args);
    }
}

Anyway,这是个很简单的程序,就是不断地做一个sleep()的循环。在运行的过程中,没有新的对象的创建,只是不断地调用Thread的静态方法sleep()。

在java7的运行环境下,通过jvisualvm,我们也观察到了PermGen缓慢上涨的现象。

在这个图中,我们看到了类的轻微上涨,而Perm Gen则不明显。我们通过probe将数据导出来,在xls中做了下面这张图。

这样看就比较显著了。It's amazing. Why? 我们在来看看下面的数据,这是TEST1和TEST2种对GC的监控图的截取:

我们对比Test1和Test2,我们并没有创新新的对象,而是使用Thread的静态方法sleep(),按理没有什么新的空间需求,特别是Test2,时间间隔很长,但是一样有Eden Space的消耗。

实际上,我们监控的并不是我们的程序,而是VM如何运行我们的呈现,需要将VM的处理考虑进去。VM的处理影响了Eden Space和Perm Gen空间的分配。之于VM是如何处理的,目前还没搞懂。但是这种轻微的变化,无需怀疑自己的代码,当然,我们可以通过长时间的跟踪作进一步的了解。

本指南详细阐述基于Python编程语言结合OpenCV计算机视觉库构建实时眼部状态分析系统的技术流程。该系统能够准确识别眼部区域,并对眨眼动作与持续闭眼状态进行判别。OpenCV作为功能强大的图像处理工具库,配合Python简洁的语法特性与丰富的第三方模块支持,为开发此类视觉应用提供了理想环境。 在环境配置阶段,除基础Python运行环境外,还需安装OpenCV核心模块与dlib机器学习库。dlib库内置的HOG(方向梯度直方图)特征检测算法在面部特征定位方面表现卓越。 技术实现包含以下关键环节: - 面部区域检测:采用预训练的Haar级联分类器或HOG特征检测器完成初始人脸定位,为后续眼部分析建立基础坐标系 - 眼部精确定位:基于已识别的人脸区域,运用dlib提供的面部特征点预测模型准确标定双眼位置坐标 - 眼睑轮廓分析:通过OpenCV的轮廓提取算法精确勾勒眼睑边缘形态,为状态判别提供几何特征依据 - 眨眼动作识别:通过连续帧序列分析眼睑开合度变化,建立动态阈值模型判断瞬时闭合动作 - 持续闭眼检测:设定更严格的状态持续时间与闭合程度双重标准,准确识别长时间闭眼行为 - 实时处理架构:构建视频流处理管线,通过帧捕获、特征分析、状态判断的循环流程实现实时监控 完整的技术文档应包含模块化代码实现、依赖库安装指引、参数调优指南及常见问题解决方案。示例代码需具备完整的错误处理机制与性能优化建议,涵盖图像预处理、光照补偿等实际应用中的关键技术点。 掌握该技术体系不仅有助于深入理解计算机视觉原理,更为疲劳驾驶预警、医疗监护等实际应用场景提供了可靠的技术基础。后续优化方向可包括多模态特征融合、深度学习模型集成等进阶研究领域。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值