[原+译]VisionMobile:情景智能:你的手机能了解你多少?

探讨情境智能服务如何通过分析手机传感器数据了解用户习惯,并提供个性化服务。随着技术进步,此类服务正逐步发展,但同时也触及隐私边界。

VisionMobile的blog:Ambient intelligence: How well does your phone know you ?

这篇文章最大的亮点在于对隐私的看法(买椟还珠):

1、隐私的边界在变化,人们对隐私的态度在改变,新一代年青人更能容忍互联网对隐私信息的获取。

2、要获取人们的个人信息,应用足够好的服务进行交换,以此吸引人们自愿提供信息。

隐私和安全重要的是个人态度。有人很担心网络安全,从来不用网银,即使你向他如何证明网银的安全,也不会打动他的心。一个将自己足迹迫不及待发出来的人,根本不在乎个人信息在网上传播。你可能获得的个人信息来自那些没有那么在意隐私的人群。小S没有绯闻,因为她会比娱记更早地自我爆料。过去不属于隐私的,如今是,如今属于隐私的,未来可能不是。社交网络和移动互联网改变我们的生活方式,特别是年轻的一代,过了一两代人,谁晓得隐私会如何定义。

隐私的边界在变,监管尺度也会变。二、三十年前,结婚离婚不都要单位开证明,单位接入到个人生活中。什么属于隐私,什么不属于,在国内本就很含糊。一些VIP卡,非要记录你的身份证号码,我们的个人信息早就漫天飞。你在房地产公司登记的信息会在中介手中,你很恼火,可这是现实。而现实法律对个人诽谤和造谣,以及对他人信息的曝光并没有实际的惩罚。

有个问题要理清:获得用户的信息不等于可以随意处置,用户要能清楚知道信息在谁手中,不能买卖用户信息(需立法加强,这是保护隐私的关键),但是你可以根据众多的信息,提供pattern。

老拿隐私说事,不如在技术上考虑在用户充分知情的情况下,如何保护个人数据,在商务上,如何提供更好的服务,让用户自愿分享他的信息。


[你是否曾希望手机更好地理解你,无需通过触控、输入和滚动来告诉它你要做什么?这也许并不遥远。VisionMobile资深分析师Andreas Pappas分析未来的情景智能和走向此愿景的手机演进之路。]

“PlaceMe”不是传统意义上的应用。无真正人机交互,用户无需告诉它要做什么。它安静地呆在后台,观察你,学习你的日程习惯,记录你的足迹。

“Highlight”是另一安静的后台应用。它扫描你四周的人,查看他们的资料,如果发现有趣的人,如和你有共同朋友,它会告诉你它所知的关于他们的一切。

PlaceMe和Hightlight是新种类的移动应用,更贴切地可称为情景感知服务。这类业务要求极少或零用户输入,通过检测手机上的传感器不断了解环境,结合云端信息源,补充其他缺失信息,增强用户的感知世界。

超级公司,如Google和高通,对这类业务也非常感兴趣:

- Google Now是目前在Android Jellybean(Android4.1)上提供,通过历史搜索记录来预测,显示或读出认为对你有帮助的信息,如本地天气或航班信息。

-Gimbal是高通的上下文感知平台,通过具有地理围栏geofencing(基于位置选择)、兴趣感知、图像识别等功能的SDK,赋予应用上下文感知能力。

PlaceMe的供应商Alohar Mobile也同时提供SDK和API,开发者可在应用中集成基于位置和位移的功能。

目前,这类服务处于初期。它们目的是最大化情景上下文感知(你在哪,你正在去哪,天气怎样,你的心情、健康,或者交通情况等等),最小化用户输入,使这些服务从前台消失,进入后台,只有当有有趣的要说时才打扰你。

移动设备在舞台的中心

近二十年,情景智能一直是学院圈子和研究实验室的热门话题:智能墙、屏幕、冰箱和家庭,传感器和传感器网络充斥在研究论文中。这些设备能够在环境中理解并自动进行互动。尽管取得一些进展,但非常缺乏现实使用场景和商业推动。失败原因之一是这些服务和设备在大部分时间内未能关联用户,也就是效用被局限在非常有限的使用场景。

将所有智能器件关联用户的关键器件一直缺失直至现在:传感器容器智能手机。传感器容器智能手机是情景智能环境中非常重要的关键器件:它伴随你即使不是全部也是大部分的时间,有能力对你绝大部分的行为和互动进行监控、理解、通信和反应。

智能手机上传感器的数量和质量在近年得到快速提升(陀螺仪、湿度计、温度计),并将延续此趋势。将来,我们可能看到医疗传感器集成到手机上。然而提供情景智能服务,除了传感器外,还要有几个关键成分:

-云数据存储:在线数据源将传感器所读取的信息转化为人们可阅读的形式。如,Wi-Fi传感器只有将Wi-Fi热点地址在云端数据库进行匹配,才可作为位置传感器。

- 廉价和无所不在的数据:情景服务的实现加强了永远在线、无所不在的实时数据连接到云资源。

-廉价的云处理能力和推理引擎:这些云端部件进行数字运算和数据处理,结合传感器输入的各类数据(环境、地理、经济等)来推测意图,并决定适当的行为。

- 移动处理能力:现在,4核1.5GHz处理器的移动设备的能力可与笔记本相比,可进行大量的本地处理。

- 应用:应用作为面向用户的前端和界面,满足和扩展可能的使用场景。

上面大部分元素的性能和价格水平到了近期才到达移动情景智能业务的要求。上下文感知SDK,如高通和AloharMobile提供的,要求使用这些工具开发者优化应用的用户上下文信息和环境。通过这样,他们提供比传统应用更合理的体验,以及更直观的用户互动。例如,通过了解用户位置、日程路线和目前交通信息,某个人助理服务可推测并通知用户现在该下班去学校接小孩,用户的最佳选择是绕路行驶,因为他的常规路线正在堵车。并且处理并不需要任何的用户输入。这些服务只需要通过检查用户日常行为来学习用户习惯和作息表。

三星在Galaxy S3中集成部分概念:当你输入号码时拿起电话接近耳朵,认为你将要呼叫某人。(距离感应器:靠近耳朵的时候屏幕自动变暗,离开人体时,自动变亮。利用距离感应器,用户就不同按接听键,进行自动接通或拨号。想想,在北方冬天,不用再摘下手套,颤颤巍巍用手指划过冰冷的触摸屏,只要将手机靠近耳朵就可以接听)当你一直观看屏幕时,保持屏幕亮(不休眠)。这些新功能同时出现在手机和服务,显示朝情景智能方向发展的趋势,将会点燃这领域一波创新,开放给更宽泛的使用场景。

新的应用场景正在开启

除了一系列只针对个人的个人助理服务,情景智能服务的范围远远超过个人层面。通过诸如PlaceMe的应用,采集和处理上千和上百万用户的传感器数据,可以发掘规模空前的社交行为和环境数据。机遇是巨大的:

-商业:用户购物模式,例如消费者在超市的线路,以及他们在每个过道的停留时间,对实体零售商可能是非常有用的信息。即使智能移动服务的主要目的是商业,他们必须向用户提供直接价值。否则,将很难吸引用户并逾越用户私隐的边界。例如,通过了解个人购物篮,可在大型超市中标出最短路线和最佳交易。

-公共安全:城市的交通格局和在特定地点的大量人流预警可通过来传感器数据而来的采集智能实现。当正常模型发生改变时触发安全警告。

-计划、预报和研究:有持续观察位置和环境变量得到的数据,提供了独特的资源,策划者和研究者可以从中挖掘,更好地了解社会和环境模型的改变,以及对改变的反应。

-健康监控:集成在移动电话上的医疗传感器可在紧急情况下向个人或医生进行告警,并推荐治疗方案。尽管目前这些传感器是以附件提供,在未来某天有可能集成到手机中。

上下文感知SDK出现和手机传感器集成度提高,将拓展更多新的应用场景,由开发者来提供。

越过隐私“保护线”

正如著名硅谷影响者Robert Scoble指出,文中描述的服务越过了“保护线(freakyline)”,暗示着对隐私关注程度很高。Placeme和Highlight是越过保护线的应用/服务例子,收集私人信息方面远远地超过了Facebook。PlaceMe目前对数据加密,绝大部分商业应用场景只能在用户放弃对他们个人信息某些控制后才解锁。

PlaceMe的创办者Sam Liang认为这类服务将成为普及,一旦我们开始使用,将难以离开。如果这是对的,意味着用户对隐私的观感将发生根本性的改变:用户得到的效益将大到足以克服对个人数据被使用的担心。Facebook已经到达这里,将“保护线”推到更高位置:敞开人们的生活,在广阔的社交圈子中在那里,和谁在一起,在做什么。所有这些通常都是用户自愿公开的。尽管关注隐私,没有迹象显示用户放弃会Facebook,表明Facebook的功效值得绝大部分用户在隐私中取舍。PlaceMe和Hightlight通过自动和连续收集数据,将这条线进一步推向更高的水平。

当然,对隐私敏感程度因年龄而异:青少年对隐私丢失敏感更少,已将很多用户数据控制交给社交网络。人们对待隐私的态度正在变化,越来越多的用户放弃控制。然而,仍有有大量的敏感用户存在,当使用个人数据,市场人员应开始考虑将消费者根据敏感度进行敏感度价格分类。

机遇在那里

新兴情景智能领域在整条移动价值链上有许多利益相关者和机遇:

集成更多样和更多的传感器,促进更短手机更换周期,设备和器件厂商可从中获利,特别是那些开拓新应用场景的,诸如医疗和环境传感器。如今,昂贵器件已变得足够好和便宜(屏幕、CPU、内存),在不久的将来有可能将价值转移到集成传感器上。

平台供应商、云服务和上下文感知API/SDK提供商将移动传感器数据和云资源以及开发者关联。他们在将来可能作为传感器信息的集成者和发布者,处理数据,为原始传感器数据增添显著的重售价值。运营商也可从中获利,如果利用他们通信汇聚者的角色:从位置数据到通信模式和用户数据,运营商可方位精细颗粒度的用户信息。目前,可能因监管障碍,禁止运营商利用这些数据,但是用户私隐态度的改变可以推动监管者允许运营商轻微触碰。

开发者已被证明具备利用最新软硬件能力扩展和创建新应用场景的创新能力。开发者提供前端,将情景智能带给用户,使用这些能力,推动应用经济的一个新的增长周期

让我们知道你对于未来情景智能业务的新想法。

- Andreas (@PappasAndreas)

相关链接:我的产业生态链和杂谈文章

内容概要:本文档是一份关于“超声谐波成像中幅超声谐波成像中幅度调制聚焦超声引起的全场位移和应变的分析模型(Matlab代码实现)度调制聚焦超声引起的全场位移和应变的分析模型”的Matlab代码实现研究资料,重点构建了一个用于分析在超声谐波成像过程中,由幅度调制聚焦超声所引发的生物组织全场位移与应变的数学模型。该模型通过Matlab仿真手段实现了对声场激励下组织力学响应的精确计算与可视化,有助于深入理解超声激励与组织变形之间的物理机制,提升超声弹性成像的精度与可靠性。文档还附带多个相关科研领域的Matlab/Simulink代码实例,涵盖无人机控制、路径规划、电力系统仿真、信号处理、机器学习等多个方向,展示了强大的技术支撑与应用拓展能力。; 适合人群:具备Matlab编程基础,从事医学超声成像、生物力学建模、信号与图像处理等相关领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①用于超声弹性成像中组织力学响应的仿真与分析;②为开发新型超声诊断技术提供理论模型与算法支持;③作为多物理场耦合仿真的教学与研究案例,促进跨学科技术融合。; 阅读建议:建议读者结合Matlab代码逐行理解模型实现细节,重点关注声场建模、组织力学方程求解及位移应变后处理部分。同时可参考文档中提供的其他仿真案例,拓宽研究思路,提升综合科研能力。
标题基于SpringBoot的高校餐饮档口管理系统设计与实现AI更换标题第1章引言介绍高校餐饮档口管理系统的研究背景、意义、国内外现状及论文方法与创新点。1.1研究背景与意义阐述高校餐饮档口管理现状及系统开发的重要性。1.2国内外研究现状分析国内外高校餐饮管理系统的研究与应用进展。1.3研究方法及创新点概述本文采用的研究方法及系统设计的创新之处。第2章相关理论总结与高校餐饮档口管理系统相关的现有理论。2.1SpringBoot框架理论阐述SpringBoot框架的理、优势及其在Web开发中的应用。2.2数据库设计理论介绍数据库设计的基本则、方法和步骤。2.3系统安全理论讨论系统安全设计的重要性及常见安全措施。第3章系统需求分析对高校餐饮档口管理系统的功能需求、性能需求等进行详细分析。3.1功能需求分析列举系统需实现的主要功能,如档口管理、订单处理等。3.2性能需求分析分析系统对响应时间、并发处理能力等性能指标的要求。3.3非功能需求分析阐述系统对易用性、可维护性等非功能方面的需求。第4章系统设计详细描述高校餐饮档口管理系统的设计过程。4.1系统架构设计给出系统的整体架构,包括前端、后端和数据库的设计。4.2模块设计详细介绍各个功能模块的设计,如用户管理、档口信息管理等。4.3数据库设计阐述数据库表结构的设计、数据关系及索引优化等。第5章系统实现与测试介绍高校餐饮档口管理系统的实现过程及测试方法。5.1系统实现系统各模块的具体实现过程,包括代码编写和调试。5.2系统测试方法介绍系统测试的方法、测试用例设计及测试环境搭建。5.3系统测试结果与分析从功能、性能等方面对系统测试结果进行详细分析。第6章结论与展望总结本文的研究成果,并展望未来的研究方向。6.1研究结论概括高校餐饮档口管理系统的设计与实现成果。6.2展望指出系统存在的不足及未来改进和扩展的方向。
评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值