python3高级特性

原创 2016年08月28日 19:50:17

高级特性

代码越少、开发效率越高

切片

  • 作用 
    listtuple的部分元素
  • 语句

    1. 定义

      1.>>> L = list(range(100))
      2.>>> L
      3.[0, 1, 2, 3, ..., 99]
      
    2. 取前十个数

      1.>>>L[:10]
      2.[0,1,2,3,4,5,6,7,8,9]
      
    3. 取后十个数

      1.>>> L[-10:]
      2.[90, 91, 92, 93, 94, 95, 96, 97, 98, 99]
      
    4. 取中间十个数

      1.>>> L[10:20]
      2.[10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
      
    5. 前十个数,每两个取一个

      1.>>> L[:10:2]
      2.[0, 2, 4, 6, 8]
      
    6. 所有数,每五个取一个

      1.>>> L[::5]
      2.[0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95]
      
    7. 复制

      1.>>> L[:]
      2.[0, 1, 2, 3, ..., 99]
      
  • 注意 
    1. list切片操作后,结果仍是list
    2. tuple切片操作后,结果仍是tuple
    3. 字符串也可以用切片操作,结果仍是字符串

迭代

  • 作用 
    for...in循环来遍历这个list或tuple
  • 语句

    1. 循环迭代listtuple

      1.>>>w=[1,2,3]
      2.>>>for i in w:
      3....     print(key)
      4....
      5.1
      6.2
      7.3
      
    2. 循环迭代dict,迭代顺序可能不一样

      1.>>> d = {'a': 1, 'b': 2, 'c': 3}
      2.>>> for key in d:
      3....     print(key)
      4....
      5.a
      6.c
      7.b
      

      默认情况下,dict迭代的是key。如果要迭代value,可以用for value in d.values(),如果要同时迭代keyvalue,可以用for k, v in d.items()

    3. 循环迭代字符串 
      1.>>> for ch in 'ABC':
      2....     print(ch)
      3....
      4.A
      5.B
      6.C
      
  • 注意

    1. 判断一个对象是否可迭代 
      方法是通过collections模块的Iterable类型判断

      1.>>> from collections import Iterable
      2.>>> isinstance('abc', Iterable) # str是否可迭代
      3.True
      4.>>> isinstance([1,2,3], Iterable) # list是否可迭代
      5.True
      6.>>> isinstance(123, Iterable) # 整数是否可迭代
      7.False
      
    2. for循环同时迭代索引和元素本身

      1.>>> for i, value in enumerate(['A', 'B', 'C']):
      2....     print(i, value)
      3....
      4.0 A
      5.1 B
      6.2 C
      
    3. 同时迭代两个数

      1.>>> for s in[(1,1),(2,3),(3,4)]:
      2....     print(s)
      3....
      4.(1, 1)
      5.(2, 3)
      6.(3, 4)
      7.>>> for x,y in[(1,1),(2,3),(3,4)]:
      8....     print(x,y)
      9....
      10.1 1
      11.2 3
      12.3 4
      

列表生成式

  • 作用 
    简单却强大的可以用来创建list的生成式。
  • 语句

    1. 如果要生成[1x1, 2x2, 3x3, …, 10x10]怎么做

      1.>>> [x * x for x in range(1, 11)]
      2.[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
      
    2. for循环后面还可以加上if判断,这样我们就可以筛选出仅偶数的平方

      1.>>> [x * x for x in range(1, 11) if x % 2 == 0]
      2.[4, 16, 36, 64, 100]
      
    3. 使用两层循环,可以生成全排列

      1.>>> [m + n for m in 'ABC' for n in 'XYZ']
      2.['AX', 'AY', 'AZ', 'BX', 'BY', 'BZ', 'CX', 'CY', 'CZ']
      
    4. 列表生成式也可以使用两个变量来生成list

      1.>>> d = {'x': 'A', 'y': 'B', 'z': 'C' }
      2.>>> [k + '=' + v for k, v in d.items()]
      3.['y=B', 'x=A', 'z=C']
      
  • 注意

    • isinstance()函数可以判断一个变量是不是字符串 
      1.>>> x = 'abc'
      2.>>> y = 123
      3.>>> isinstance(x, str)
      4.True
      5.>>> isinstance(y, str)
      6.False
      

生成器

  • 作用 
    如果列表元素过多,会占用大量内存。但是如果列表元素可以按照某种算法推算出来,那么就不用创建完整的list,在python中可以通过一种一边循环一边计算的:generator的生成器机制。
  • 语句

    1. 把列表生成器的[]改成()

      1.>>> g = (x * x for x in range(10))
      2.>>> for n in g:
      3....     print(n)
      4.... 
      5.0
      6.1
      7.4
      8.9
      9.16
      10.25
      11.36
      12.49
      13.64
      14.81
      
    2. 使用yield这个关键字

      • 一般的斐波那契数列写法

        1.def fib(max):
        2.n, a, b = 0, 0, 1
        3.while n < max:
        4.    print(b)
        5.    a, b = b, a + b
        6.    n = n + 1
        7.return 'done'
        
      • 使用生成器的写法

        1.def fib(max):
        2.    n, a, b = 0, 0, 1
        3.    while n < max:
        4.          yield b
        5.          a, b = b, a + b
        6.          n = n + 1
        7.    return 'done'
        
        1.>>> for n in fib(6):
        2....     print(n)
        3....
        4.1
        5.1
        6.2
        7.3
        8.5
        9.8
        
  • 注意

    • 创建了generator后,调用next(),可能会出现StopIteration的错误,所以都是通过for循环来迭代它。
    • 在generator的函数中,每次调用next()的时候,遇到yield语句就返回,所以最后发现拿不到return语句的返回值,要拿到就得捕获StopIteration错误。 
      1.>>> g = fib(6)
      2.>>> while True:
      3....     try:
      4....         x = next(g)
      5....         print('g:', x)
      6....     except StopIteration as e:
      7....         print('Generator return value:', e.value)
      8....         break
      9....
      10.g: 1
      11.g: 1
      12.g: 2
      13.g: 3
      14.g: 5
      15.g: 8
      16.Generator return value: done
      

迭代器

  • 作用 
    可以被next()函数调用并不断返回下一个值的对象,称为迭代器:Iterator
  • 语句

    1. 使用isinstance()判断一个对象是否是Iterator对象

      1.>>> from collections import Iterator
      2.>>> isinstance((x for x in range(10)), Iterator)
      3.True
      4.>>> isinstance([], Iterator)
      5.False
      6.>>> isinstance({}, Iterator)
      7.False
      8.>>> isinstance('abc', Iterator)
      9.False
      
    2. listdictstrIterable变成Iterator可以使用iter()函数

      1.>>> isinstance(iter([]), Iterator)
      2.True
      3.>>> isinstance(iter('abc'), Iterator)
      4.True
      
  • 注意 
    为什么listdictstr等数据类型不是Iterator?

    这是因为Python的Iterator对象表示的是一个数据流Iterator对象可以被next()函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()函数实现按需计算下一个数据,所以Iterator的计算是惰性的,只有在需要返回下一个数据时它才会计算。

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

Python3 基础:高级特性-列表生成式和生成器

列表生成式: []通过列表生成式,我们可以直接创建一个列表。# 举个例子# x * x 是对遍历结果的操作,后面跟着遍历,判断条件. # 那么这个式子的意思就是:生成1...10的x*x的序列. # ...

python3精简笔记(三)——高级特性

Python中 1行代码能实现的功能,决不写5行代码。请始终牢记,代码越少,开发效率越高。切片取一个list或tuple的部分元素是非常常见的操作。Python提供了切片(Slice)操作符L = [...

Python3 基础:高级特性-切片和迭代

切片# 定义一个list L = ['Michael', 'Sarah', 'Tracy', 'Bob', 'Jack']# 对L进行切片 >>> L[0:3] # 取索引:0 1 2的内容 ,或者...

python学习笔记3:面向对象的高级特性3 定制类

Python的class中有许多特殊用途的函数,可以帮助我们定制类。 请看代码:class Student(object): def __init__(self,name): ...

ReactJS 快速入门 3 高级特性

ReactJS  快速入门 3  高级特性 一. 容器组件 React元素也可以包含其他的子元素,这意味着响应的React组件是一个 容器组件。比如: //JSXEzPanel title="t...

[html5入门-23]CSS3高级特性之径向渐变

一 语法 background-image:radial-gradient(position,shape size,start-color, color,.. 1 position 渐变中心位置 值...

[html5入门-24]深度分析css3高级特性中的线性渐变

在学习css3线性渐变的时,深感受其属性迷惑,为此摸索总结深扒出其特性,分享于下文。 主要内容: 1 线性渐变中渐变方向的角度问题; 2 渐变起始点、终点的精确定位; 3 与PS中渐变的异同; 3 渐...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:python3高级特性
举报原因:
原因补充:

(最多只允许输入30个字)