LeetCode(121) Best Time to Buy and Sell Stock

本文介绍了一种在给定股票价格序列的情况下,寻找最大收益的算法。通过维护一个记录当前最低价格的变量,该算法可以在O(n)时间内解决买卖股票问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目

Say you have an array for which the ith element is the price of a given stock on day i.

If you were only permitted to complete at most one transaction (ie, buy one and sell one share of the stock), design an algorithm to find the maximum profit.

分析

求买卖最大收益问题。简单来说就是给定一个整数序列,求最大差值。

该题目的关键是,效率。

我们很容易想到二次循环解决该问题,但是很不幸,是超时的! 所以,必须另择他法。

其实在O(n)时间内,也可以解决问题,只需要加一个记录当前最低价格的变量即可;价低购入,价高售出嘛~

AC代码

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        if (prices.empty())
            return 0;

        //maximum记录最大收益,price记录当前最低价格
        int maximum = 0, price = prices[0] ,size = prices.size();

        for (int i = 1; i < size ; ++i)
        {
            //价低时买入
            if (prices[i] < price)
            {
                price = prices[i];
                continue;
            }
            //价高时卖出,比较并记录最大收益
            else{
                int tmp = prices[i] - price;
                if (tmp > maximum)
                    maximum = tmp;
            }           
        }//for
        return maximum;
    }
};

GitHub测试程序源码

### LeetCode 121 题目解析 LeetCode121 题名为 **Best Time to Buy and Sell Stock**,其目标是在给定的价格数组中找到最大利润。可以通过一次交易(买入和卖出)来最大化收益。 #### 动态规划解分析 对于该问题,可以采用动态规划的方解决。以下是详细的解释: 定义状态变量 `T_i` 表示到第 `i` 天为止的最大利润。为了计算这个值,我们需要维护两个关键的状态: - 当前最低价格 `min_price`:表示在当前天之前股票的最低购买价格。 - 利润更新逻辑:每天尝试更新最大利润为当天价格减去之前的最低价格。 具体实现如下所示[^4]: ```cpp class Solution { public: int maxProfit(vector<int>& prices) { if (prices.empty()) return 0; int minPrice = INT_MAX; // 初始化最小价格为正无穷大 int maxProfit = 0; // 初始化最大利润为零 for (const auto& price : prices) { minPrice = std::min(minPrice, price); // 更新最低价格 maxProfit = std::max(maxProfit, price - minPrice); // 计算并更新最大利润 } return maxProfit; } }; ``` 上述代码的核心在于通过单次遍历完成所有操作,时间复杂度为 \(O(n)\),空间复杂度为 \(O(1)\)[^4]。 --- #### 关键点说明 1. 使用动态规划的思想时,虽然表面上看起来是一个贪心算的应用场景,但实际上它也可以被看作是一种简化版的动态规划方。这里的关键是利用了历史数据中的最优点(即最低价),从而减少了不必要的重复计算[^5]。 2. 对于更复杂的买卖次数限制情况(如最多两次交易等问题),则需要用到多维 DP 数组或者额外的状态变量来进行建模[^3]。 --- ### 总结 针对 LeetCode121 题的最佳解决方案之一就是基于动态规划思想设计出的时间效率高的线性扫描算。这种方不仅简单易懂而且性能优越,在实际应用中有很高的价值[^4]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值