关闭

深度学习第二课--图像识别与KNN

735人阅读 评论(0) 收藏 举报
分类:

图像分类的难点

  • 视角不同
  • 尺寸不同
  • 变形
  • 光影
  • 背景干扰
  • 同类内的差异
    例如躺椅、座椅、

图像识别的核心

数据驱动学习。就像人看过很多猫以后,就知道什么是猫。把很多同一类的图片“喂给”计算机,让计算机自己去学习该类图片的特征。之后做出评估。

KNN解决图片分类

利用图片与图片之间的距离。根据距离最近的N张图片的标签决定预测图片的分类。图片之间的距离可以用曼哈顿距离、欧式距离或者余弦距离表示。
KNN的优点是思路简单,但是预测的时候需要与所有训练集图片比较,时间长。而且效果也不好。基本上是颜色一致的图片是最近邻的。
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:17208次
    • 积分:608
    • 等级:
    • 排名:千里之外
    • 原创:36篇
    • 转载:23篇
    • 译文:0篇
    • 评论:2条