深度学习第二课--图像识别与KNN

原创 2016年06月01日 22:34:46

图像分类的难点

  • 视角不同
  • 尺寸不同
  • 变形
  • 光影
  • 背景干扰
  • 同类内的差异
    例如躺椅、座椅、

图像识别的核心

数据驱动学习。就像人看过很多猫以后,就知道什么是猫。把很多同一类的图片“喂给”计算机,让计算机自己去学习该类图片的特征。之后做出评估。

KNN解决图片分类

利用图片与图片之间的距离。根据距离最近的N张图片的标签决定预测图片的分类。图片之间的距离可以用曼哈顿距离、欧式距离或者余弦距离表示。
KNN的优点是思路简单,但是预测的时候需要与所有训练集图片比较,时间长。而且效果也不好。基本上是颜色一致的图片是最近邻的。
版权声明:本文为博主原创文章,未经博主允许不得转载。

吴恩达深度学习课程第一课第二周课程作业

学过吴恩达的Machine Learning课程,现在跟着学深度学习,本来是想付费的,奈何搞半天付款没有成功,没办法只能下载数据集自己搞了。由于门外汉,安装工具软件加上完成作业花了一天时间,其实第二周...

基于深度学习的图像识别算法研究

  • 2017年11月29日 21:12
  • 2.01MB
  • 下载

《深度学习——Andrew Ng》第二课第一周编程作业

Initialization作业通过三种不同的初始化参数的方式(zero、random、he),对神经网络进行参数初始化,通过对比,得出每种初始化方式的特征。最后结论为he初始化是最好的方式。...

《深度学习——Andrew Ng》第二课第二周编程作业

Regularization为了防止过拟合,引入正则化,这里进行了L2、dropout正则化实验。...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习第二课--图像识别与KNN
举报原因:
原因补充:

(最多只允许输入30个字)