数学归纳法证明Nicomachus's Theorem

今天看了《计算机程序设计艺术卷1》的部分内容。也希望更深入了解一下数学归纳法。所以将网页基本算重新写了一遍,写下证明过程。

理论Theorem

13=1 1 3 = 1
23=3+5 2 3 = 3 + 5
33=7+9+11 3 3 = 7 + 9 + 11
43=13+15+17+19 4 3 = 13 + 15 + 17 + 19

总的来说:
nN>0,n3=ni=1(n2n+2i1)=(n2n+1)+(n2n+3)+...+(n2n+2n1)) ∀ n ∈ N > 0 , n 3 = ∑ i = 1 n ( n 2 − n + 2 ∗ i − 1 ) = ( n 2 − n + 1 ) + ( n 2 − n + 3 ) + . . . + ( n 2 − n + 2 ∗ n − 1 ) )
特别说明: (n+1)3 ( n + 1 ) 3 的第一项比 n3 n 3 的最后一项大2。

归纳法证明

nN>0,P(n)n3=ni=1(n2n+2i1) ∀ n ∈ N > 0 , 假 设 P ( n ) 是 n 3 = ∑ i = 1 n ( n 2 − n + 2 ∗ i − 1 )

归纳法基准

P(1) P ( 1 ) 成 立 ,因为 13=1 1 3 = 1 成立。

归纳法假设

假设 P(k) P ( k ) 为真, k>=1 ∀ k >= 1 。也就是说 k3=(k2k+1)+(k2k+3)+...+(k2k+2k1) k 3 = ( k 2 − k + 1 ) + ( k 2 − k + 3 ) + . . . + ( k 2 − k + 2 k − 1 )
我们需要证明: (k+1)3=[(k+1)2(k+1)+1]+[(k+1)2(k+1)+3]+...+[(k+1)2(k+1)+2(k+1)1] ( k + 1 ) 3 = [ ( k + 1 ) 2 − ( k + 1 ) + 1 ] + [ ( k + 1 ) 2 − ( k + 1 ) + 3 ] + . . . + [ ( k + 1 ) 2 − ( k + 1 ) + 2 ( k + 1 ) − 1 ]

证明步骤

因为: (k+1)2(k+1)+j=k2k+j+2k ( k + 1 ) 2 − ( k + 1 ) + j = k 2 − k + j + 2 k ,所以 P(k+1) P ( k + 1 ) 的前k项与 P(k) P ( k ) 相比,多出2k。
Tk=(k2k+1)+(k2k+3)+...+(k2k+2k1) T k = ( k 2 − k + 1 ) + ( k 2 − k + 3 ) + . . . + ( k 2 − k + 2 k − 1 )

T(k+1)=[(k+1)2(k+1)+1]+[(k+1)2(k+1)+3]+...+[(k+1)2(k+1)+2(k+1)1]=T(k)+k(2k)+[(k+1)2(k+1)+2(k+1)1]=k3+2k2+k2+2k+1+k+11=k3+3k2+3k+1=(k+1)3 T ( k + 1 ) = [ ( k + 1 ) 2 − ( k + 1 ) + 1 ] + [ ( k + 1 ) 2 − ( k + 1 ) + 3 ] + . . . + [ ( k + 1 ) 2 − ( k + 1 ) + 2 ( k + 1 ) − 1 ] = T ( k ) + k ( 2 k ) + [ ( k + 1 ) 2 − ( k + 1 ) + 2 ( k + 1 ) − 1 ] = k 3 + 2 k 2 + k 2 + 2 k + 1 + k + 1 − 1 = k 3 + 3 k 2 + 3 k + 1 = ( k + 1 ) 3
推出在P(k)成立的前提下,P(k+1)成立。
所以:
nN>0,n3=ni=1(n2n+2i1)=(n22n+1)+(n2n+3)+...+(n2n+2n1)) ∀ n ∈ N > 0 , n 3 = ∑ i = 1 n ( n 2 − n + 2 ∗ i − 1 ) = ( n 2 2 − n + 1 ) + ( n 2 − n + 3 ) + . . . + ( n 2 − n + 2 ∗ n − 1 ) )

从定义证明

nN>0,n3=ni=1(n2n+2i1)=(n2n+1)+(n2n+3)+...+(n2n+2n1)) ∀ n ∈ N > 0 , n 3 = ∑ i = 1 n ( n 2 − n + 2 ∗ i − 1 ) = ( n 2 − n + 1 ) + ( n 2 − n + 3 ) + . . . + ( n 2 − n + 2 ∗ n − 1 ) )

ni=1(n2n+2i1)=n3n2+ni=1(2i1)=n3n2+n2=n3 ∑ i = 1 n ( n 2 − n + 2 ∗ i − 1 ) = n 3 − n 2 + ∑ i = 1 n ( 2 ∗ i − 1 ) = n 3 − n 2 + n 2 = n 3

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值