Leetcode_palindrome-partitioning-ii

地址:https://oj.leetcode.com/problems/palindrome-partitioning-ii/

Given a string s, partition s such that every substring of the partition is a palindrome.

Return the minimum cuts needed for a palindrome partitioning of s.

For example, given s = "aab",
Return 1 since the palindrome partitioning ["aa","b"] could be produced using 1 cut.

思路:DP. 用二维数组ispalindrome记录从位置 i 到位置 j 是否是回文. 当i - j >= 2 时  ispalindrome[ i ][ j ] == true 当且仅当 s[ i ] == s[ j ] && ispalindrome[ j + 1][ i - 1]==true.(i == j 时也为true)

用dp[k] 记录从下标0到下标k-1的字符串的最小cut数, dp[k] 初始化为k-1 ,并有

dp[k+1] = min(dp[k+1],  1 + dp[t]), 其中ispalindrome[ t ][ k ]==true ( 当下标t 到 下标 k之间的字符串为回文时.)

参考代码:

class Solution {
public:
	int minCut(string s) {
		int len = s.length();
		if(len<=1)
			return 0;
		vector<vector<bool>>is_p(len+1, vector<bool>(len+1, false));
		vector<int>dp(len+1);
		for(int i = 0; i<=len; ++i)
			dp[i]=i-1;

		for(int i = 0; i<len; ++i)
		{
			for(int j = 0; j<=i; ++j)
			{
				if(i-j>=2 && s[i]==s[j] && is_p[j+1][i-1])
				{
					is_p[i][j] = is_p[j][i] = true;
					dp[i+1] = min(dp[i+1], 1+dp[j]);
				}
				else if(i-j<2 && s[i]==s[j])
				{
					is_p[i][j] = is_p[j][i] = true;
					dp[i+1] = min(dp[i+1], 1+dp[j]);
				}
			}
		}
		return dp[len];
	}
};


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值