1.1 Tensorflow笔记(基础篇): 图与会话,变量

原创 2017年08月03日 23:11:54

图与会话

import tensorflow as tf
import os

# 取消打印 cpu,gpu选择等的各种警告
# 设置TF_CPP_MIN_LOG_LEVEL 的等级,1.1.0以后设置2后 只不显示警告,之前需要设置3,但设置3不利于调试
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import time

# 创建一个常量 op, 产生一个 1x2 矩阵. 这个 op 被作为一个节点
# 加到默认图中.

# 构造器的返回值代表该常量 op 的返回值.
matrix1 = tf.constant([[3., 3.]])

# 创建另外一个常量 op, 产生一个 2x1 矩阵.
matrix2 = tf.constant([[2.], [2.]])

# 创建一个矩阵乘法 matmul op , 把 'matrix1''matrix2' 作为输入.
# 返回值 'product' 代表矩阵乘法的结果.
product = tf.matmul(matrix1, matrix2)

t1 = time.clock()
# session 会话在使用后
with tf.Session() as sess:
    # 指定设备(是否指定cpu速度差距不大)
    # with tf.device('/cpu:0'):
    result = sess.run([product])
    print(result)
t2 = time.clock()

运行结果

[array([[ 12.]], dtype=float32)]
0.08066363317567163

变量

state = tf.Variable(0, name='counter')

input = tf.constant(3.0)

input1 = tf.placeholder(tf.float32)
input2 = tf.placeholder(tf.float32)

output = tf.multiply(input1, input2)

with tf.Session() as sess:
    print(sess.run([output], feed_dict={input1: [7.], input2: [2.]}))
# 运行结果
#[array([ 14.], dtype=float32)]
版权声明:转载请标明出处:http://blog.csdn.net/fontthrone

相关文章推荐

Tensorflow 学习速率的设置|学习速率的指数下降

随着学习的进行,深度学习的学习速率逐步下降  为什么比  固定的学习速率 得到的结果更加准确? 如上图所示,曲线代表损失值,小球一开始位于(1)处,假设学习速率设置为 △ v,那么根据梯度下...

Tensorflow深度学习笔记(二)-图、会话和变量

TensorFlow™ 是一个采用数据流图(data flow graphs),用于数值计算的开源软件库。节点(Nodes)在图中表示数学操作,图中的线(edges)则表示在节点间相互联系的多维数据数...

tensorflow学习笔记(3)——基础(三)——TF训练和变量

5 tensorflow实现神经网络1 TF游乐场及神经网络简介(TF游乐场,http://playground.tensorflow.org,略) 使用神经网络解决分类问题的主要步骤: 1. 提...

Swift基础1.1——基本语法—变量和常量

Swift基础第一讲——基本语法—变量和常量

go学习笔记:1.1变量

/* *data:2015-06-02 *author:qdx *note:go语言学习笔记:变量 */ package main import "fmt" //go 语言的变量类型: /* b...

7.3 TensorFlow笔记(基础篇):加载数据之从队列中读取

前言整体步骤在TensorFlow中进行模型训练时,在官网给出的三种读取方式,中最好的文件读取方式就是将利用队列进行文件读取,而且步骤有两步: 1. 把样本数据写入TFRecords二进制文件 ...

7.1 TensorFlow笔记(基础篇):加载数据之预加载数据与填充数据

TensorFlow加载数据TensorFlow官方共给出三种加载数据的方式: 1. 预加载数据 2. 填充数据 预加载数据的缺点: 将数据直接嵌在数据流图中,当训练数据较大时,很消耗内存....

Tensorflow学习笔记之一 —— 基础知识篇

这是个人的第一篇博客。开博客的初衷,在于记录自己未来三年的学习进度、过程。 两月前开始接触Deep Learning和Tensorflow,目前和大师兄的‘’成果‘’:基于opencv导入图像数据并生...

7.2 TensorFlow笔记(基础篇): 生成TFRecords文件

前言在TensorFlow中进行模型训练时,在官网给出的三种读取方式,中最好的文件读取方式就是将利用队列进行文件读取,而且步骤有两步: 1. 把样本数据写入TFRecords二进制文件 2. ...

6.1 Tensorflow笔记(基础篇):队列与线程

前言在Tensorflow的实际应用中,队列与线程是必不可少,主要应用于数据的加载等,不同的情况下使用不同的队列,主线程与其他线程异步进行数据的训练与读取,所以队列与线程的知识也是Tensorflow...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)