关闭

6.1 Tensorflow笔记(基础篇):队列与线程

标签: 线程队列pythontensorflow
156人阅读 评论(0) 收藏 举报
分类:

前言

在Tensorflow的实际应用中,队列与线程是必不可少,主要应用于数据的加载等,不同的情况下使用不同的队列,主线程与其他线程异步进行数据的训练与读取,所以队列与线程的知识也是Tensorflow必须要学会的重要知识
另一方面,Tensorflow作为符号编程框架,在构图后,加载数据有三种方式,预加载与填充数据都存在,数据量大消耗内存等情况的出现.使用第三种方式文件读取避免了前两者的缺点,但是其实现则必须要使用队列与此线程,因此为了进一步的学习,也需要在这个时候掌握队列与线程的知识

FIFOQueue : 先入先出的队列

# 在使用循环神经网络时,希望读入的训练样本是有序的,就要用到FIFOQueue

# 先创建一个先入先出的队列,初始化队列插入0.1,0.2,0.3三个数字
q = tf.FIFOQueue(3,tf.float32)
init = q.enqueue_many(([0.1,0.2,0.3],))
# 定义出队,+1,入队操作
x = q.dequeue()
y = x+1
q_inc = q.enqueue(y)

with tf.Session() as sess:
    sess.run(init)
    # quelen = sess.run(q.size())
    for i in range(2):
        sess.run(q_inc) # 执行两次操作,队列中的值变为0.3,1.1,1.2

    for j in range(sess.run(q.size())):
        print(sess.run(q.dequeue())) # 输出队列的值

运行结果

0.3
1.1
1.2

RandomShuffleQueue:随机队列

 随机队列,再出队列时,是以随机的顺序产生元素的
# 例如,我们在训练一些图像样本时,使用CNN的网络结构,希望可以无序的读入训练样本
q = tf.RandomShuffleQueue(capacity=10,min_after_dequeue=2,dtypes=tf.float32)
# capacity 队列最大长度,min_after_dequeue 出队后最小的长度
with tf.Session() as sess :
    for i in range(0,10): # 10次入队
        sess.run(q.enqueue(i))

    for i in range(0,8): # 8次出队
        print(sess.run(q.dequeue()))

# 在队列长度等于最小值时,执行出队操作,会发生阻断
# 在队列长度等于最大值时,执行入队操作,会发生阻断

# 解除阻断的一种方法---设置等待时间
# run_options = tf.RunOptions(time_out_in_ms = 100000) # 等待十秒
# try:
#     sess.run(q.dequeue(),options=run_options)
# except tf.errors.DeadlineExceededError:
#     print('out of range')

运行结果:

1.0
6.0
3.0
0.0
7.0
4.0
8.0
9.0

队列管理器

q = tf.FIFOQueue(1000, tf.float32)
counter = tf.Variable(0.0)  # 计数器
increment_op = tf.assign_add(counter, tf.constant(1.0))  # 操作给计数器加一
enquence_op = q.enqueue(counter)  # 操作: 让计数器加入队列

# 创建一个队列管理器QueueRunner,用这两个操作相对列q中添加元素,目前我们只使用一个线程
qr = tf.train.QueueRunner(q, enqueue_ops=[increment_op, enquence_op] * 1)

# 启动一个会话,从队列管理器qr中创建线程

# 主线程
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    enquence_threads = qr.create_threads(sess, start=True)  # 启用入队线程
    # 主线程
    for i in range(10):
        print(sess.run(q.dequeue()))

# tensorflow.python.framework.errors_impl.CancelledError: Run call was cancelled

运行结果:

187.0
190.0
195.0
201.0
206.0
209.0
214.0
219.0
223.0
230.0

报错:......

线程和协调器

q = tf.FIFOQueue(1000, tf.float32)
counter = tf.Variable(0.0)  # 计数器
increment_op = tf.assign_add(counter, tf.constant(1.0))  # 操作给计数器加一
enquence_op = q.enqueue(counter)  # 操作: 让计数器加入队列

# 第一种情况,在关闭其他线程之后(除主线程之外的其它线程),调用出队操作
print('第一种情况,在关闭其他线程之后(除主线程之外的其它线程),调用出队操作')
# 创建一个队列管理器QueueRunner,用这两个操作相对列q中添加元素,目前我们只使用一个线程
qr = tf.train.QueueRunner(q, enqueue_ops=[increment_op, enquence_op] * 1)


# 主线程
sess = tf.Session()
sess.run(tf.global_variables_initializer())

# Coordinator: 协调器, 协调线程间的关系,可以视为一种信号量,用来做同步
coord = tf.train.Coordinator()

# 启动入队线程,协调器是线程的参数
enqueue_threads = qr.create_threads(sess,coord=coord,start=True)

# 主线程

for i in range(0,10):
    print(sess.run(q.dequeue()))

coord.request_stop() # 通知其他线程关闭
coord.join(enqueue_threads) # join 操作等待其他线程结束,其他所有线程关闭之后,这一函数才能返回


print('第二种情况: 在队列线程关闭之后,调用出队操作-->处理tf.errors.OutOfRange错误')

# q启动入队线程
enqueue_threads = qr.create_threads(sess,coord=coord,start=True)

# 主线程
coord.request_stop() # 通知其他线程关闭

for j in range(0,10):
    try:
        print(sess.run(q.dequeue()))
    except tf.errors.OutOfRangeError:
        break

coord.join(enqueue_threads) # join 操作等待其他线程结束,其他所有线程关闭之后,这一函数才能返回

运行结果:

第一种情况,在关闭其他线程之后(除主线程之外的其它线程),调用出队操作
5.0
7.0
10.0
17.0
23.0
29.0
34.0
38.0
46.0
52.0
第二种情况: 在队列线程关闭之后,调用出队操作-->处理tf.errors.OutOfRange错误
53.0
53.0
53.0
53.0
53.0
53.0
53.0
53.0
53.0
53.0
1
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:223238次
    • 积分:2535
    • 等级:
    • 排名:第14515名
    • 原创:71篇
    • 转载:17篇
    • 译文:2篇
    • 评论:20条
    博客专栏