6.1 Tensorflow笔记(基础篇):队列与线程

原创 2017年08月04日 21:49:40

前言

在Tensorflow的实际应用中,队列与线程是必不可少,主要应用于数据的加载等,不同的情况下使用不同的队列,主线程与其他线程异步进行数据的训练与读取,所以队列与线程的知识也是Tensorflow必须要学会的重要知识
另一方面,Tensorflow作为符号编程框架,在构图后,加载数据有三种方式,预加载与填充数据都存在,数据量大消耗内存等情况的出现.使用第三种方式文件读取避免了前两者的缺点,但是其实现则必须要使用队列与此线程,因此为了进一步的学习,也需要在这个时候掌握队列与线程的知识

FIFOQueue : 先入先出的队列

# 在使用循环神经网络时,希望读入的训练样本是有序的,就要用到FIFOQueue

# 先创建一个先入先出的队列,初始化队列插入0.1,0.2,0.3三个数字
q = tf.FIFOQueue(3,tf.float32)
init = q.enqueue_many(([0.1,0.2,0.3],))
# 定义出队,+1,入队操作
x = q.dequeue()
y = x+1
q_inc = q.enqueue(y)

with tf.Session() as sess:
    sess.run(init)
    # quelen = sess.run(q.size())
    for i in range(2):
        sess.run(q_inc) # 执行两次操作,队列中的值变为0.3,1.1,1.2

    for j in range(sess.run(q.size())):
        print(sess.run(q.dequeue())) # 输出队列的值

运行结果

0.3
1.1
1.2

RandomShuffleQueue:随机队列

 随机队列,再出队列时,是以随机的顺序产生元素的
# 例如,我们在训练一些图像样本时,使用CNN的网络结构,希望可以无序的读入训练样本
q = tf.RandomShuffleQueue(capacity=10,min_after_dequeue=2,dtypes=tf.float32)
# capacity 队列最大长度,min_after_dequeue 出队后最小的长度
with tf.Session() as sess :
    for i in range(0,10): # 10次入队
        sess.run(q.enqueue(i))

    for i in range(0,8): # 8次出队
        print(sess.run(q.dequeue()))

# 在队列长度等于最小值时,执行出队操作,会发生阻断
# 在队列长度等于最大值时,执行入队操作,会发生阻断

# 解除阻断的一种方法---设置等待时间
# run_options = tf.RunOptions(time_out_in_ms = 100000) # 等待十秒
# try:
#     sess.run(q.dequeue(),options=run_options)
# except tf.errors.DeadlineExceededError:
#     print('out of range')

运行结果:

1.0
6.0
3.0
0.0
7.0
4.0
8.0
9.0

队列管理器

q = tf.FIFOQueue(1000, tf.float32)
counter = tf.Variable(0.0)  # 计数器
increment_op = tf.assign_add(counter, tf.constant(1.0))  # 操作给计数器加一
enquence_op = q.enqueue(counter)  # 操作: 让计数器加入队列

# 创建一个队列管理器QueueRunner,用这两个操作相对列q中添加元素,目前我们只使用一个线程
qr = tf.train.QueueRunner(q, enqueue_ops=[increment_op, enquence_op] * 1)

# 启动一个会话,从队列管理器qr中创建线程

# 主线程
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    enquence_threads = qr.create_threads(sess, start=True)  # 启用入队线程
    # 主线程
    for i in range(10):
        print(sess.run(q.dequeue()))

# tensorflow.python.framework.errors_impl.CancelledError: Run call was cancelled

运行结果:

187.0
190.0
195.0
201.0
206.0
209.0
214.0
219.0
223.0
230.0

报错:......

线程和协调器

使用协调器来管理线程
这是要注意的的是在队列线程关闭后,再执行出队操作,将会报错”tf.errors.OutOfRange”
第一点会报错很好理解,队列关闭自然不能出队了(如果你学过数据结构那么你应该能够理解队列的意义,如果没能理解,建议重新掌握队列这一基本概念),
第二点则需要注意一下,报的错误是超出范围,而非队列不存在,希望当你遇到这个错误的时候能够想到,实际上可能是队列线程已经被取消了,而非真的超出了范围.

q = tf.FIFOQueue(1000, tf.float32)
counter = tf.Variable(0.0)  # 计数器
increment_op = tf.assign_add(counter, tf.constant(1.0))  # 操作给计数器加一
enquence_op = q.enqueue(counter)  # 操作: 让计数器加入队列

# 第一种情况,在关闭其他线程之后(除主线程之外的其它线程),调用出队操作
print('第一种情况,在关闭其他线程之后(除主线程之外的其它线程),调用出队操作')
# 创建一个队列管理器QueueRunner,用这两个操作相对列q中添加元素,目前我们只使用一个线程
qr = tf.train.QueueRunner(q, enqueue_ops=[increment_op, enquence_op] * 1)


# 主线程
sess = tf.Session()
sess.run(tf.global_variables_initializer())

# Coordinator: 协调器, 协调线程间的关系,可以视为一种信号量,用来做同步
coord = tf.train.Coordinator()

# 启动入队线程,协调器是线程的参数
enqueue_threads = qr.create_threads(sess,coord=coord,start=True)

# 主线程

for i in range(0,10):
    print(sess.run(q.dequeue()))

coord.request_stop() # 通知其他线程关闭
coord.join(enqueue_threads) # join 操作等待其他线程结束,其他所有线程关闭之后,这一函数才能返回


print('第二种情况: 在队列线程关闭之后,调用出队操作-->处理tf.errors.OutOfRange错误')

# q启动入队线程
enqueue_threads = qr.create_threads(sess,coord=coord,start=True)

# 主线程
coord.request_stop() # 通知其他线程关闭

for j in range(0,10):
    try:
        print(sess.run(q.dequeue()))
    except tf.errors.OutOfRangeError:
        break

coord.join(enqueue_threads) # join 操作等待其他线程结束,其他所有线程关闭之后,这一函数才能返回

运行结果:

第一种情况,在关闭其他线程之后(除主线程之外的其它线程),调用出队操作
5.0
7.0
10.0
17.0
23.0
29.0
34.0
38.0
46.0
52.0
第二种情况: 在队列线程关闭之后,调用出队操作-->处理tf.errors.OutOfRange错误
53.0
53.0
53.0
53.0
53.0
53.0
53.0
53.0
53.0
53.0

更详细的内容你可以参考github中的源代码

版权声明:转载请标明出处:http://blog.csdn.net/fontthrone

相关文章推荐

【Tensorflow】超大规模数据集解决方案:通过线程来预取(上)

环境Tensorflow1.2(这是最新的一个版本),python2.7 这是我重点要讲的解决方案,我怕篇幅过长,分成了两篇,上篇介绍一下预备的东西,下篇来进行实验 一.Tensorflow中的队列机...

TensorFlow学习系列(五):如何使用队列和多线程优化输入管道

这篇教程是翻译Morgan写的TensorFlow教程,作者已经授权翻译,这是原文。 目录TensorFlow学习系列(一):初识TensorFlowTensorFlow学习系列(二):形状和动态维度...

TensorFlow使用next_batch()读取/tensorflow.python.framework.errors_impl.InvalidArgumentError: Expect 3 fi

分批次读取csv文件,如图: 源代码: import tensorflow as tf import numpy as np def readMyFileFormat(fileNameQueue...

Tensorflow 多线程设置

Tensorflow 多线程设置 一. 通过 ConfigProto 设置多线程  (具体参数功能及描述见  tensorflow/core/protobuf/config.proto) 在...

TensorBoard可视化学习

参考window下启动tensorboard import tensorflow as tf with tf.name_scope('input1'): input1 = tf.co...

7.3 TensorFlow笔记(基础篇):加载数据之从队列中读取

前言整体步骤在TensorFlow中进行模型训练时,在官网给出的三种读取方式,中最好的文件读取方式就是将利用队列进行文件读取,而且步骤有两步: 1. 把样本数据写入TFRecords二进制文件 ...

Tensorflow实战学习(四十九)【模型存储加载,队列线程,加载数据,自定义操作】

生成检查点文件(chekpoint file),扩展名.ckpt,tf.train.Saver对象调用Saver.save()生成。包含权重和其他程序定义变量,不包含图结构。另一程序使用,需要重新创建...
  • WuLex
  • WuLex
  • 2017-11-23 11:22
  • 77

tensorflow下的队列与线程(1)

实验环境:windows 7,anaconda 3(Python 3.5),tensorflow(gpu/cpu) 函数: tf.FIFOQueue(capacity,dtypes,shapes...

C++primer学习笔记-----6.1函数基础

【实参是形参的初始值,用于调用函数时初始化形参。 实参与形参的类型和数量必须一一对应,但是C++ 语言并未对实参的求职顺序做出规定。】 【函数的形参列表可以为空,但是不能省略。 定义一个...

java笔记:熟练掌握线程技术---基础篇之线程的协作和死锁的问题(下)

====================================================== 注:本文源代码点此下载 =============================...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)