机器学习调参-模型选择

本文探讨了机器学习中的超参数调优,包括手动调优、网格搜索、随机搜索和贝叶斯方法。手动调优需要专业知识,网格搜索通过穷举搜索超参数组合,随机搜索则更有效率,尤其在不重要的参数维度。贝叶斯方法利用后验概率选择模型,倾向于简单模型。当遇到模型欠拟合或训练误差高时,可尝试增加模型复杂度或检查错误。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文主要介绍机器学习模型中超级参数(hyperparameter)的调优问题(下文简称为调参问题),主要的方法有手动调优、网格搜索、随机搜索以及基于贝叶斯的参数调优方法。因为模型通常由它的超级参数确定,所以从更高的角度看调参问题就转化为模型选择问题。

手动调优

需要较多专业背景知识。

网格搜索

先固定一个超参,然后对其他各个超参依次进行穷举搜索,超参集合为
H={ h1,h2,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值