本文主要介绍机器学习模型中超级参数(hyperparameter)的调优问题(下文简称为调参问题),主要的方法有手动调优、网格搜索、随机搜索以及基于贝叶斯的参数调优方法。因为模型通常由它的超级参数确定,所以从更高的角度看调参问题就转化为模型选择问题。
手动调优
需要较多专业背景知识。
网格搜索
先固定一个超参,然后对其他各个超参依次进行穷举搜索,超参集合为
H={
h1,h2,
本文主要介绍机器学习模型中超级参数(hyperparameter)的调优问题(下文简称为调参问题),主要的方法有手动调优、网格搜索、随机搜索以及基于贝叶斯的参数调优方法。因为模型通常由它的超级参数确定,所以从更高的角度看调参问题就转化为模型选择问题。
需要较多专业背景知识。
先固定一个超参,然后对其他各个超参依次进行穷举搜索,超参集合为
H={
h1,h2,