CUDA——SDK4.1+VS2008+VA_X

原创 2012年03月31日 15:07:16

  在此记录一下平台搭建的过程。

      首先需要安装VS 2008。

      然后从英伟达官网上下载开发包、驱动和工具包。

      保证驱动和开发包、工具包均为同一版本。

      我下载的是4.1的最新版本。即cudatoolkit_4.1.28_win_32.msi 、

devdriver_4.1_winxp_32_286.19_general.exe 、gpucomputingsdk_4.1.28_win_32.exe 。

      然后开始安装,首先装好对应的驱动,其次装工具包,最后装开发包。

工具包的路径是默认的,即C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v4.1\,

而开发包可以更改路径,我选择的路径是D:\NVIDIA Corporation\NVIDIA GPU Computing SDK 4.1\。

      装好之后,需要配置VS 2008。

首先需要将C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v4.1\extras\visual_studio_integration\rules

路径下面的4个rules文件拷贝到VS安装路径下面的VC\VCProjectDefaults中,这样就可以在VS 2008中打开位于

D:\NVIDIA Corporation\NVIDIA GPU Computing SDK 4.1\C\src 的工程样例了。

为了显示关键字高亮,需要将D:\NVIDIA Corporation\NVIDIA GPU Computing SDK 4.1\C\doc\syntax_highlighting\visual_studio_8

下面的usertype.dat拷贝到VS安装路径下面的Common7\IDE目录中。

同时还需要配置工程选项,打开VS 2008,在Tools --> Options --> Projects and Solutions 下面的 VC++ Directories中分别加入cuda

的头文件目录和源文件目录。

头文件目录为D:\NVIDIA Corporation\NVIDIA GPU Computing SDK 4.1\C\common\inc

源文件目录为D:\NVIDIA Corporation\NVIDIA GPU Computing SDK 4.1\C\common\src

将VC++ Project settings中的C/C++ File Extensions中加上*.cu ,在Extensions To Include中加上*.cuh ,

然后在Text Editor中的File Extension下面Microsoft VC++中加入cu、cuh扩展名。

这时VS 2008已经可以正常编译cuda工程了,并且对于关键字也高亮了。

 

       下面我们配置VC 2008的助手Visual Assist X,打开Visual Assist Options,在其中的Project --> C/C++ Directories

中加入一些信息,使得VC助手能够识别cuda项目文件中的宏,函数等,同时对于函数还可以跟进去。

在custom下面的Other include files中加入头文件的目录,我加入了三个,分别是:

D:\NVIDIA Corporation\NVIDIA GPU Computing SDK 4.1\C\common\inc

D:\NVIDIA Corporation\NVIDIA GPU Computing SDK 4.1\shared\inc

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v4.1\include

在source files中加入源文件的目录,我加入了

D:\NVIDIA Corporation\NVIDIA GPU Computing SDK 4.1\C\common\src

最后需要修改相应的注册表信息,在My Computer -- > HKEY_CURRENT_USER --> Software --> Whole Tomato

中找到ExtSource键值,添加.cu和.cuh。

      为了方便我们的cuda项目开发,网上有CUDA_VS Wizard,下载安装之后可以直接新建CUDA工程。

      这样所有的配置便做好了,可以开始CUDA学习之旅了。

学习CUDA——SDK4.1+VS2008+VA_X

首先需要安装VS 2008。 然后从英伟达官网上下载开发包、驱动和工具包。 保证驱动和开发包、工具包均为同一版本。 我下载的是4.1的最新版本。即cudatoolkit_4.1.28_win_3...
  • mengfanteng
  • mengfanteng
  • 2014年03月06日 15:21
  • 568

CUDA并行简单加法程序

#include #define N 7 __global__ void add(int *a,int *b,int *c) { int tid=blockIdx.x; if(tid
  • zhanglei0107
  • zhanglei0107
  • 2012年02月29日 10:28
  • 2063

CUDA程序优化小记(七)

CUDA全称Computer Unified Device Architecture(计算机同一设备架构),它的引入为计算机计算速度质的提升提供了可能,从此微型计算机也能有与大型机相当计算的能力。可是...
  • jiangcaiyang123
  • jiangcaiyang123
  • 2014年01月26日 20:22
  • 2842

CUDA By Example——Julia实例

《CUDA By Example》中文译名《GPU高性能编程CUDA实战》是研究GPGPU异构并行计算非常不错的工具书。因为书中给出的代码,非常个别的地方有失误,而且对不同的编程工具可能需要自己配置链...
  • zpb312
  • zpb312
  • 2017年05月10日 14:35
  • 982

CUDA学习日志:开发环境配置和学习资源

接触CUDA的时间并不长,最开始是在cuda-convnet的代码中接触CUDA代码,当时确实看的比较痛苦。最近得空,在图书馆借了本《GPU高性能编程 CUDA实战》来看看。 CUDA(Compute...
  • Linoi
  • Linoi
  • 2014年11月20日 17:15
  • 3576

CUDA学习日志:入门例程和编程接口

上篇博文我们主要是介绍了CUDA开发环境的配置和一些学习资源。现在我们正式进入CUDA的学习。如果你还记得上篇最后有一个“Hello World”的例子,你会发现它和C程序根本没什么差。不过,从这个H...
  • Linoi
  • Linoi
  • 2014年11月23日 11:03
  • 2387

CUDA(四)——图片处理

#include "cuda_runtime.h" #include "device_launch_parameters.h" #include "cpu_bitmap.h" #include #i...
  • u014413083
  • u014413083
  • 2016年11月19日 10:44
  • 1344

CUDA 线程同步

不同线程同时执行,它们可能访问同一数据,需要考虑同步的问题。例如: 每个线程i要访问全局存储器的A矩阵中的某个元素A[i],然后对其进行进行修改,修改结果与A[i]的值有关。 每个线程i要访问全局存储...
  • llcchh012
  • llcchh012
  • 2015年03月22日 16:51
  • 2124

深入理解CUDA点积运算

本博客主要讲述了《GPU高性能编程CUDA实战》这本书中关于点积运算中难懂的部分。...
  • github_30605157
  • github_30605157
  • 2015年09月03日 19:42
  • 1213

CUDA学习笔记一:CUDA+OpenCV的图像转置,采用Shared Memory进行CUDA程序优化

通过OpenCV读取图像,采用CUDA对图像数据进行处理,利用Shared Memory避免转置过程中的不合并访存,提高图像处理速度...
  • u014206910
  • u014206910
  • 2016年07月29日 14:55
  • 3123
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:CUDA——SDK4.1+VS2008+VA_X
举报原因:
原因补充:

(最多只允许输入30个字)