链接:
棋盘问题
Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 18942 Accepted: 9435
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 18942 | Accepted: 9435 |
Description
在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C。
Input
输入含有多组测试数据。
每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n
当为-1 -1时表示输入结束。
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。
每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n
当为-1 -1时表示输入结束。
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。
Output
对于每一组数据,给出一行输出,输出摆放的方案数目C (数据保证C<2^31)。
Sample Input
2 1 #. .# 4 4 ...# ..#. .#.. #... -1 -1
Sample Output
2 1
Source
code:
搜索弱爆了有木有,等于是个白痴,从头开始练
#include<stdio.h>
#include<string.h>
const int maxn = 10;
char map[10][10];
int vr[10];
int vc[10];
int n,k;
int ans;
void dfs(int x, int y, int num)
{
if(num == k)
{
ans++;
return;
}
for(int i = x+1; i <= n; i++) //每次只往下一行搜索
{
for(int j = 1; j <= n; j++)
{
if(map[i][j] == '#' && !vr[i] && !vc[j])
{
vr[i] = vc[j] = 1;
dfs(i,j,num+1);
vr[i] = vc[j] = 0;
}
}
}
}
int main()
{
while(scanf("%d%d", &n,&k) != EOF)
{
if(n == -1 && k == -1) break;
memset(vr, 0, sizeof(vr));
memset(vc, 0, sizeof(vc));
for(int i = 1; i <= n; i++)
scanf("%s", map[i]+1);
ans = 0;
for(int i = 1; i <= (n-k+1); i++)
{
for(int j = 1; j <= n; j++)
{
if(map[i][j] == '#')
{
vr[i] = 1; vc[j] = 1;
dfs(i,j,1);
vr[i] = 0; vc[j] = 0;
}
}
}
printf("%d\n", ans);
}
return 0;
}