ICCV 2013 图像检索分类方面的文章汇总

原创 2013年12月02日 10:12:33

下面新的2013的ICCV的Orals,先贴到这里,以后会就每一篇大概写总结,读后想法的。

Recognition: detection, categorization, classification, indexing, matching 52 HOGgles: Visualizing Object Detection Features Carl Vondrick*, MIT; Aditya Khosla, ; Tomasz Malisiewicz, ; Antonio Torralba, MIT
81 Regionlets for Generic Object Detection Xiaoyu Wang*, NEC Labs America; Ming Yang, NEC Labs America; Shenghuo Zhu, ; Yuanqing Lin,
189 How Do You Tell a Blackbird from a Crow? Thomas Berg*, Columbia University; Peter Belhumeur, "Columbia University, USA"
454 Learning to predict gaze in egocentric video Yin Li*, Georgia Institute of Technolog; Alireza Fathi, Georgia Institute of Technology; James Rehg, Georgia Institute of Technology
569 From Large Scale Image Categorization to Entry-Level Categories Vicente Ordonez*, Stony Brook University; Jia Deng, Stanford University; Yejin Choi, Stony Brook University; Alexander Berg, Stony Brook University; Tamara Berg, "Stony Brook University, USA"
738 Style-aware Mid-level Representation for Discovering Visual Connections in Space and Time Yong Jae Lee*, Robotics Institute, Carnegie Mellon University; Alexei (Alyosha) Efros, CMU; Martial Hebert, "CMU, USA"
884 Shufflets: shiftable shared parts for multi-category detection Iasonas Kokkinos*, "Ecole Centrale Paris, France"
965 To aggregate or not to aggregate: Selective match kernels for image search Giorgos Tolias, ; Yannis Avrithis, NTUA; Herv Jgou*, INRIA
1173 NEIL: Extracting Visual Knowledge from Web Data Xinlei Chen, CMU; Abhinav Shrivastava, Carnegie Mellon University; Abhinav Gupta*,
1546 Learning Graphs to Match Minsu Cho*, ; Karteek Alahari, ENS-Willow; Jean Ponce, "ENS, France"
1649 Beyond Hard Negative Mining: Efficient Detector Learning via Block-Circulant Decomposition Joo Henriques, Institute of Systems and Robotics - University of Coimbra; Rui Caseiro*, Institute of Systems and Robotics - University of Coimbra; Joao Carreira, University of Coimbra; Jorge Batista, ISR
1685 Real-time Articulated Hand Pose Estimation using Semi-supervised Transductive Regression Forests Danhang Tang*, Imperial College London
1788 Holistic Scene Understanding for 3D Object Detection with RGBD cameras Dahua Lin*, TTIC; Sanja Fidler, TTI Chicago ; Raquel Urtasun, Toyota Technological Institute at Chicago
1965 Fast Subspace Search via Grassmannian Based Hashing Xu Wang*, University of Minnesota; Stefan Atev, ; John Wright, ; Gilad Lerman, University of Minnesota

 

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

deepCNN--“卷积神经网络用于基于图像检索”文章阅读

基础知识:C1,C2层介绍   C3, Imagenet classification with deep convolutional neural networks.

ICCV05关于纹理方面的论文

  • 2011-08-02 15:30
  • 291KB
  • 下载

计算机视觉方面的三大国际会议是ICCV, CVPR和ECCV

ICCV的全称是International Comference on Computer Vision,正如很多和他一样的名字的会议一行,这样最朴实的名字的会议,通常也是这方面最nb的会议。ICC...

图像检索:几类基于内容的图像分类技术

一共有四种基于内容的图像分类方法,即颜色、纹理、形状和空间关系。 1.基于颜色特征的分类技术 目前,提取颜色特征己经成为几乎所有基于内容图像分类技术的重要手段。由于颜色是物体必备的视觉特性,同一类物体...

行人检索 Partial Person Re-identification ICCV2015

行人检索问题是一个很难得问题,而局部行人检索问题则更加的困难。目前大部分文献都关注整体行人检索,没有考虑遮挡问题。局部行人检索问题如下图所示: 下图所示为我们实际中的检索图像,以及我们手工框出来的输...

ICCV2013 录用论文(目标跟踪相关部分)

原文地址:http://blog.csdn.net/gxf1027/article/details/11581149

ICCV 2013

ICCV saliency检测相关的论文列表: 1. (oral)Benchmarking Computational Model of Visual Saliency. Ali Borji*,...

读ICCV2013论文<Boolean Map Saliency>

基于Boolean Map进行显著性检测,关键的公式如下所示: 公式可以看做是一个贝叶斯推导模型,p表示在给定图像的情况下,得到Boolean Map为B的概率,而A则表示B所能够提供的注意...

深度学习(十七)基于改进Coarse-to-fine CNN网络的人脸特征点定位-ICCV 2013

基于改进Coarse-to-fine CNN网络的人脸特征点定位 原文地址:http://blog.csdn.net/hjimce/article/details/50099115 作者:hji...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)