ICCV 2013 图像检索分类方面的文章汇总

原创 2013年12月02日 10:12:33

下面新的2013的ICCV的Orals,先贴到这里,以后会就每一篇大概写总结,读后想法的。

Recognition: detection, categorization, classification, indexing, matching 52 HOGgles: Visualizing Object Detection Features Carl Vondrick*, MIT; Aditya Khosla, ; Tomasz Malisiewicz, ; Antonio Torralba, MIT
81 Regionlets for Generic Object Detection Xiaoyu Wang*, NEC Labs America; Ming Yang, NEC Labs America; Shenghuo Zhu, ; Yuanqing Lin,
189 How Do You Tell a Blackbird from a Crow? Thomas Berg*, Columbia University; Peter Belhumeur, "Columbia University, USA"
454 Learning to predict gaze in egocentric video Yin Li*, Georgia Institute of Technolog; Alireza Fathi, Georgia Institute of Technology; James Rehg, Georgia Institute of Technology
569 From Large Scale Image Categorization to Entry-Level Categories Vicente Ordonez*, Stony Brook University; Jia Deng, Stanford University; Yejin Choi, Stony Brook University; Alexander Berg, Stony Brook University; Tamara Berg, "Stony Brook University, USA"
738 Style-aware Mid-level Representation for Discovering Visual Connections in Space and Time Yong Jae Lee*, Robotics Institute, Carnegie Mellon University; Alexei (Alyosha) Efros, CMU; Martial Hebert, "CMU, USA"
884 Shufflets: shiftable shared parts for multi-category detection Iasonas Kokkinos*, "Ecole Centrale Paris, France"
965 To aggregate or not to aggregate: Selective match kernels for image search Giorgos Tolias, ; Yannis Avrithis, NTUA; Herv Jgou*, INRIA
1173 NEIL: Extracting Visual Knowledge from Web Data Xinlei Chen, CMU; Abhinav Shrivastava, Carnegie Mellon University; Abhinav Gupta*,
1546 Learning Graphs to Match Minsu Cho*, ; Karteek Alahari, ENS-Willow; Jean Ponce, "ENS, France"
1649 Beyond Hard Negative Mining: Efficient Detector Learning via Block-Circulant Decomposition Joo Henriques, Institute of Systems and Robotics - University of Coimbra; Rui Caseiro*, Institute of Systems and Robotics - University of Coimbra; Joao Carreira, University of Coimbra; Jorge Batista, ISR
1685 Real-time Articulated Hand Pose Estimation using Semi-supervised Transductive Regression Forests Danhang Tang*, Imperial College London
1788 Holistic Scene Understanding for 3D Object Detection with RGBD cameras Dahua Lin*, TTIC; Sanja Fidler, TTI Chicago ; Raquel Urtasun, Toyota Technological Institute at Chicago
1965 Fast Subspace Search via Grassmannian Based Hashing Xu Wang*, University of Minnesota; Stefan Atev, ; John Wright, ; Gilad Lerman, University of Minnesota

 

(翻译)ICCV 2013 文章统计

标题 作者 主要学科领域       三维计算机视觉 39 弹碎片的密集场景重建 谦一皱*,斯坦福大学斯蒂芬·米勒,美国斯坦福大学,弗拉德连·Koltun,斯坦福大学 702 一个全球...

2013 ICCV 文章列表

链接:http://www.cs.toronto.edu/~kyros/local_outgoing/ICCV-Final-Results/ ICCV 2013 Results (29 Aug, 2...

关于图像检索方面的一些怪想法

目前图像检索的局限性

deepCNN--“卷积神经网络用于基于图像检索”文章阅读

基础知识:C1,C2层介绍   C3, Imagenet classification with deep convolutional neural networks....

ICCV05关于纹理方面的论文

  • 2011年08月02日 15:30
  • 291KB
  • 下载

计算机视觉方面的三大国际会议是ICCV, CVPR和ECCV

计算机视觉方面的三大国际会议是ICCV, CVPR和ECCV ICCV的全称是International Comference on Computer Vision,正如很多和他一样的名字...

计算机视觉方面的三大国际会议是ICCV, CVPR和ECCV

ICCV的全称是International Comference on Computer Vision,正如很多和他一样的名字的会议一行,这样最朴实的名字的会议,通常也是这方面最nb的会议。ICC...

文章学习《MobileNet教程:用TensorFlow搭建在手机上运行的图像分类器》

本文仅是博主为记录和加深印象所整理,有兴趣请阅读原文。 原文地址: https://baijia.baidu.com/s?id=1574323979283055&wfr=pc&fr=ch_l...

图像检索:几类基于内容的图像分类技术

一共有四种基于内容的图像分类方法,即颜色、纹理、形状和空间关系。 1.基于颜色特征的分类技术 目前,提取颜色特征己经成为几乎所有基于内容图像分类技术的重要手段。由于颜色是物体必备的视觉特性,同一类物体...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:ICCV 2013 图像检索分类方面的文章汇总
举报原因:
原因补充:

(最多只允许输入30个字)